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Preface

The C�I�M�E� School on Advanced Numerical Approximation on Nonlinear Hyper�
bolic Equations� held in Cetraro �Italy� from June ��rd to June ��th� ����� aimed
at providing a comprehensive and up�to�date presentation of numerical methods
which are nowadays used to solve nonlinear partial di�erential equations of hyper�
bolic type� developing shock discontinuities� The lectures were given by four out�
standing scientists in the eld and re�ect the state of the art of a broad spectrum of
topics� The most modern and e�ective methodologies in the framework of nite ele�
ments� nite di�erences� nite volumes� spectral methods and kinetic methods� have
been addressed� Particularly� high�order shock capturing techniques� discontinuous
space�time nite elements� discontinuous Galerkin methods� adaptive techniques
based upon a�posteriori error analysis� The theoretical properties of each method
and its algorithmic complexity are addressed� A wide variety of applications to
the solution of systems� of conservation laws arising from �uid dynamics and other
elds is considered�

This volume collects the texts of the four series of lectures presented at the
Summer School� They are arranged in alphabetic order according to the name of
the lecturer�

The rst is� however� the lecture of Prof� Eithan Tadmor� reported at the be�
ginning as it contains an introductory overview to the subject which can serve as
an introduction for the other lectures in this volume�

As editor of these Lecture Notes� it is my pleasure to thank the Director and the
Members of the C�I�M�E� Scientic Committee� in particular Prof� Arrigo Cellina
for the invitation to organize the School and their support during the organization
and to the C�I�M�E� sta�� lead by Prof� Pietro Zecca� My very sincere thanks go
to the lecturers for their excellent job of preparing and teaching the Course and a
preliminary version of the lectures to be distributed among the partecipants� Par�
ticularly thanks go to all the partecipants for having created an extraordinarily
friendly and stimulating atmosphere� and to those who have contributed with short
communications	 Tim Barth� Angelo Iollo� Stefano Micheletti� Gabriella Puppo�
Giovanni Russo� Riccardo Sacco� Fausto Saleri and Alessandro Veneziani� Finally�
I would like to thank the Director and sta� of the �Grand Hotel San Michele� in
Cetraro �Cosenza� for the kind ospitality and e�ciency and the following collab�
orators for their invaluable help	 Simona Lilliu� from CRS� �scientic secretary��
Francesco Bosisio� Simona Perotto and Alessandro Veneziani from the Politecnico
di Milano for their careful editing of the manuscripts�

Milan� February ���� Alo Quarteroni
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ABSTRACT

This is a summary of �ve lectures delivered at the CIME course on �Advanced Nu�
merical Approximation of Nonlinear Hyperbolic Equations� held in Cetraro� Italy�
on June �����

Following the introductory lecture I � which provides a general overview of
approximate solution to nonlinear conservation laws� the remaining lectures deal
with the speci�cs of four complementing topics	

� Lecture II� Finite�di
erence methods � non�oscillatory central schemes�
� Lecture III� Spectral approximations � the Spectral Viscosity method�
� Lecture IV� Convergence rate estimates � a Lip� convergence theory�
� Lecture V� Kinetic approximations � regularity of kinetic formulations�
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� A General Overview

Abstract� In this introductory lecture� we overview the development of modern�
high�resolution approximations to hyperbolic conservation laws and related non�
linear equations� Since this overview also serves as an introduction for the other
lectures in this volume� it is less of a comprehensive overview� and more of a bird�s
eye view of topics which play a pivotal role in the lectures ahead� It consists of
a dual discussion on the various mathematical concepts and the related discrete
algorithms which are the required ingredients for these lectures�

I start with a brief overview on the mathematical theory for nonlinear hyper�
bolic conservation laws� The theory of the continuum � � and in this case� the
dis�continuum�� is intimately related to the construction� analysis and implemen�
tation of the corresponding discrete approximations� Here� the basic the notions of
viscosity regularization� entropy� monotonicity� total variation bounds and Rieman�
n�s problem are introduced� Then follow the the basic ingredients of the discrete
theory	 the Lax�Wendro� theorem� and the pivotal nite�di�erence schemes of Go�
dunov� Lax�Friedrichs� and Glimm�

To proceed� our dual presentation of high�resolution approximations is classi�
ed according to the analytical tools which are used in the development of their
convergence theories� These include classical compactness arguments based on To�
tal Variation �TV� bounds� e�g�� TVD nite�di�erence approximations� The use
of compensated compactness arguments based on H���compact entropy produc�
tion is demonstrated in the context of streamline di�usion nite�element method
and spectral viscosity approximations� Measure valued solutions � measured by
their negative entropy production� are discussed in the context of multidimensional
nite�volume schemes� Finally� we discuss the recent use of averaging lemmas which
yield new compactness and regularity results for approximate solutions of nonlinear
conservation laws �as well as some related equations�� which admit an underlying
kinetic formulation� e�g�� nite�volume and relaxation schemes�

��� Introduction

The lectures in this volume deal with modern algorithms for the accurate compu�
tation of shock discontinuities� slip lines� and other similar phenomena which could
be characterized by spontaneous evolution of change in scales� Such phenomena
pose a considerable computational challenge� which is answered� at least partially�
by these newly constructed algorithms� New modern algorithms were devised� that
achieve one or more of the desirable properties of high�resolution� e�ciency� sta�
bility � in particular� lack of spurious oscillations� etc� The impact of these new
algorithms ranges from the original impetus in the eld of Computational Fluid
Dynamics �CFD�� to the elds oil recovery� moving fronts� image processing���� �����
������ ������ ����

In this introduction we survey a variety of these algorithms for the approximate
solution of nonlinear conservation laws� The presentation is neither comprehensive
nor complete � the scope is too wide for the present framework Instead� we discuss
the analytical tools which are used to study the stability and convergence of these
modern algorithms� We use these analytical issues as our �touring guide� to pro�
vide a readers� digest on the relevant approximate methods� while studying there
convergence properties� They include

�



� Finite�di
erence methods� These are the most widely used methods for solving
nonlinear conservation laws� Godunov�type di�erence schemes play a pivotal
role� Two canonical examples include the upwind ENO schemes �discussed in
C��W� Shu�s lectures� and a family of high�resolution non�oscillatory central
schemes �discussed in Lecture II� 

� Finite element schemes� Here� the streamline di�usion method and its exten�
sions are canonical example� discussed in C� Johnson�s lectures 

� Spectral approximations� The Spectral Viscosity �SV� methods is discussed in
Lecture III�

� Finite�volume schemes� Finite�Volume �FV� schemes o�er a particular advan�
tage for integration over multidimensional general triangulation� beyond the
Cartesian grids� More can be found in B� Cockburn�s lectures�

� Kinetic formulations� Compactness and regularizing e�ects of approximate so�
lutions is quantied in terms of their underlying kinetic formulations� Lecture
V�

Some general references are in order� The theory of hyperbolic conservation laws
is covered in ����� ������������ ������ For the theory of their numerical approxima�
tion consult ���������������������� We are concerned with analytical tools which are
used in the convergence theories of such numerical approximations� The monograph
���� could be consulted on recent development regarding weak convergence� The re�
views of ������ ��������� are recommended references for the theory of compensated
compactness� and ������������ deal with applications to conservation laws and their
numerical approximations� Measure�valued solutions in the context of nonlinear
conservation laws were introduced in ����� The articles ����� ����� ���� prove the av�
eraging lemma� and ���������������� contain applications in the context of kinetic
formulation for nonlinear conservation laws and related equations�

A nal word about notations� Di�erent authors use di�erent notations� In this
introduction� the conservative variable are denoted by the �density� �� the spatial
�ux is A���� ��� F � are entropy pairs� etc� In later lectures� these are replaced by
the more generic notations	 conservative variables are u� v� � � � � �uxes are denoted
by f� g� � � � � the entropy function is denoted U � etc�

��� Hyperbolic Conservation Laws

A very brief overview � m equations in d spatial dimensions
The general set�up consists of m equations in d spatial dimensions

�t� !rx � A��� � �� �t� x� � R
�
t � R

d
x � �����

Here� A��� 	� �A����� � � � � Ad���� is the d�dimensional �ux� and
� 	� ����t� x�� � � � � �m�t� x�� is the unknown m�vector subject to initial conditions
���� x� � ���x��

The basic facts concerning such nonlinear hyperbolic systems are� consult �����������
����������������������

� The evolution of spontaneous shock discontinuities which requires weak �distri�
butional� solutions of ����� 

� The existence of possibly innitely many weak solutions of ����� 
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� To single out a unique "physically relevant� weak solution of ������ we seek
a solution� � � ��t� x�� which can be realized as a viscosity limit solution�
� � lim ���

�t�
� !rx � A���� � �rx � �Qrx�

��� �Q � � �����

� The entropy condition� The notion of a viscosity limit solution is intimately
related to the notion of an entropy solution� �� which requires that for all
convex entropy functions� ����� there holds� ����� ���� x��

�t���� !rx � F ��� � �� �����

A scalar function� ����� is an entropy function associated with ������ if its Hessian�
������� symmetrizes the spatial Jacobians� A�j����

������A�j��� � A�j����������� j � �� � � � � d�

It follows that in this case there exists an entropy �ux� F ��� 	� �F����� � � � � Fd�����
which is determined by the compatibility relations�

������A�j��� � F �j����� j � �� � � � � d� �����

What is the relation between the entropy condition ����� and the viscosity
limit solution in �����# multiply the latter� on the left� by ������ the compatibility
relation ����� implies that the resulting two terms on the left of ����� amount to
the sum of perfect derivatives� �t����� !rx � F ����� Consider now the right hand
side of ����� �for simplicity� we assume the viscosity matrix on the right to be the
identity matrix� Q � I�� Here we invoke the identity

��������x�
� � ��x������ ��rx�

����������rx�
��

The rst term tends to zero �in distribution sense� the second term is nonpositive
thanks to the convexity of �� and hence tend to a nonpositive measure� Thus�
a viscosity limit solution must satisfy the entropy inequality ������ The inverse
implication	 ����� �� � � lim �� of viscosity solutions �� satisfying ������ holds in
the scalar case the question requires a more intricate analysis for systems� consult
���������� and the references therein�

Indeed� the basic questions regarding the existence� uniqueness and stability of
entropy solutions for general systems are open� Instead� the present trend seems to
concentrate on special systems with additional properties which enable to answer
the questions of existence� stability� large time behavior� etc� One�dimensional ���
systems is a notable example for such systems	 their properties can be analyzed
in view of the existence of Riemann invariants and a family of entropy functions�
����� ���� x��� ������ �������� The system of m � � chromatographic equations� �����
is another example for such systems�

The di�culty of analyzing general systems of conservation laws is demonstrated
by the following negative result due to Temple� ������ which states that already for
systems with m � � equations� there exists no metric� D�� ��� such that the problem
������ ����� is contractive� i�e��

� 	D 	 D����t� �� ���t� ��� � D������ �� ����� ���� � � t � T� �m � ��� �����

In this context we quote from ����� the following

�



Theorem ��� Assume the system ���� is endowed with a one�parameter family
of entropy pairs� ���� c�� F �� c��� c � Rm� satisfying the symmetry property

��� c� � ��c ��� F �� c� � F �c ��� �����

Let ��� �� be two entropy solutions of ����� Then the following a priori estimate
holds Z

x

�����t� x� ���t� x��dx �
Z
x

������x� ����x��dx� �����

Theorem ��� is based on the observation that the symmetry property ����� is
the key ingredient for Kru$zkov�s penetrating ideas in ����� which extends his scalar
arguments into the case of general systems� This extension seems to be part of the
�folklore� familiar to some� ����������� a sketch of the proof can be found in ������

Remark ��� Theorem ��� seems to circumvent the negative statement of ������
This is done by replacing the metric D�� ��� with the weaker topology induced by
a family of convex entropies� ��� ��� Many physically relevant systems are endowed
with at least one convex entropy function �� which in turn� is linked to the hy�
perbolic character of these systems� ����������������� Systems with �rich� families of
entropies like those required in Theorem ��� are rare� however� consult ������ The
instructive �yet exceptional���� scalar case is dealt in x���� If we relax the contrac�
tivity requirement� then we nd a uniqueness theory for one�dimensional systems
which was recently developed by Bressan and his co�workers� ��������� Bressan�s
theory is based on the L��stability �rather than contractivity� of the entropy solu�
tion operator of one�dimensional systems�

Scalar conservation laws �m � �� d � ��
In the scalar case� the Jacobians A�j��� are just scalars that can be always sym�
metrized� so that the compatibility relation ����� in fact de�nes the entropy �uxes�
Fj���� for all convex ��s� Consequently� the family of admissible entropies in the
scalar case consists of all convex functions� and the envelope of this family leads to
Kru$zkov�s entropy pairs ����

��� c� � j�� cj� F �� c� � sgn��� c��A����A�c��� c � R� �����

Theorem ��� applies in this case and ����� now reads

� L��contraction� If ��� �� are two entropy solutions of the scalar conservation
law ������ then

k���t� ��� ���t� ��kL��x� � k������� ������kL��x�� �����

Thus� the entropy solution operator associated with scalar conservation laws is
L��contractive �� or non�expansive to be exact�� and hence� by the Crandall�Tartar
lemma �discussed below�� it is also monotone

������ � ������ �� ���t� �� � ���t� ��� ������

The notions of conservation� L�contraction and monotonicity play an important
role in the theory of nonlinear conservation laws� at least in the scalar case� We
discuss the necessary details of these notions� by proving the inverse implication	
the monotonicity property ������ implies the all important Kru$zkov�s entropy pairs
����� satisfying ������

�



Monotonicity and Kru�zkov�s entropy pairs
An operator T is called monotone �or order preserving� if the following implication
holds for all ��s �in some unspecied measure subspace of L�

loc�

�� � �� a�e� �� T ���� � T ���� a�e� ������

We use the terminology that if �� dominates �pointwise� a�e�� ��� then T ���� domi�
nates T �����

The following lemma due to Crandall � Tartar� ����� provides a useful characteri�
zation for such monotone operators�

Lemma ��� �Crandall�Tartar ����� Consider an operator T � which is conser�

vative in the sense that
R
T ��� �

R
�� 
��s� Then T is monotone i
 it is an

L��contraction� Z
jT ����� T ����j �

Z
j�� � ��j� ������

Proof� The standard notations� �� � �� 	� max���� ��� and �� � �� 	� min���� ���
will be used� Since j�� � ��j � �� � �� � �� � ��� we nd by conservation thatZ

j�� � ��j �
Z

�� � �� �
Z

�� � �� �

Z
T ��� � ����

Z
T ��� � ���� ������

Now� �� � �� dominates �pointwise a�e�� both �� and �� hence� if T is order pre�
serving� then T ��� � ��� dominates both T ���� and T ����� that is� T ��� � ��� �
T ����� T ���� similarly� �T ��� � ��� � �T ���� � T ����� We conclude that T is an
L��contraction� forZ

j�� � ��j �
Z

T ���� � T �����
Z

T ���� �
Z

T ���� �

Z
jT ����� T ����j�

������

The inverse implication �attributed to Stampacchia� I believe� starts with the iden�
tity �w� � jwj!w� where w� denotes� as usual� the �positive part of�� w� 	� w���
Setting w � T ����� T ���� the integrated version of this identity reads

�

Z
�T ����� T ����� �

Z
jT ����� T ����j!

Z
T ����� T �����

Given that T is L��contractive� then together with conservation it yields that the
two integrals on the right do not exceed

�

Z
�T ����� T ���� � � �

Z
j�� � ��j!

Z
�� � ��� ������

Now� if �� dominates ��� i�e�� �� � �� a�e�� then the sum of the two integrals on the
RHS vanishes� and consequently� the non�negative integrand on the LHS vanishes
as well� i�e�� T ����� T ���� � ��
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Remark ��� For linear operators T � monotonicity coincides with positivity� T ��� �
�� 
� � �� Positive operators play a classical role in various branches of analysis�
They are encountered frequently� for example� in approximation theory� e�g�� ����
x����� A well known example is provided by Bernstein polynomials� Bn����x� 	�P

k�n�n
k

�xk�� � x�n�k�� k
n

�� They produce a positive linear map�s�� �  Bn���

of C��� �� into the space of n�degree polynomials� Linear monotone operators� like
Bernstein projections� are at most rst�order accurate�

We turn to discuss the relation between monotone operators and the entropy
condition� Let fTt� t � �g be a one�parameter family of operators which form a
semi�group of constant�preserving� monotone operators� Thus we make

� Semi�group It is assumed that fTtg satises the basic semi�group �closure�
�causality� relations�

Tt�s � TtTs� T� � the identity mapping� ������

and that it has an in�nitesimal generator�

rx � A��� 	� lim
�t��

��t����Tt���� ���

Remark ��� The existence of such a generator is outlined by the Hille�Yosida
linear theory� Extensions within the context of nonlinear evolution equations
are available	 Kato�s approach in semi�Hilbert spaces and Crandall�Liggett ap�
proach in Banach spaces� consult ����� xXIV������ A concise informative ac�
count of this theory� which was specically �tailored� within the L��setup for
quasilinear evolution equations can be found in �����

With this in mind we may identify� Tt�� �	 ��t�� as the solution of the abstract
Cauchy problem

�t !rx � A���t�� � �� ������

subject to given initial conditions ���� � ��� We assume that the following two
basic properties hold�

� Constant�preserving Tt preserves constants� namely

Tt�� � Const�� � Const� ������

Finally� we bring in the key assumption of monotonicity�
� Monotonicity Our basic assumption is the monotonicity of the solution opera�

tors associated with �������

������ � ������ �� ���t� �� � ���t� ��� 
t � �� ������

The main result of this section� following the ingredients in ����� and in par�
ticular� ������ states that monotone� constant�preserving solution operators of the
Cauchy problem ������� are uniquely identied by the following entropy condition�

�	



Theorem ��� �Kru�zkov�s Entropy Condition� Assume f��t�� t � �g is a family
of solutions for the Cauchy problem ����� which is constant�preserving� ������ and
satis�es the monotonicity condition ������ Then the following entropy inequality

holds	

�tj��t�� cj!rx � fsgn��� c��A����A�c��g � �� 
c�s� ������

Thus� monotonicity �!constant preserving� recover Kru$zkov entropy pairs�

Proof� Starting with ��t� at arbitrary t � �� we compare ��t ! �t� 	� T�t��t�
with ��t ! �t� 	� T�t��t�� where ��t� 	� ���t� � c� which is cut�o� at an arbitrary
constant level� c� Since ��t�� c dominates both ��t� and c� the monotonicity of T�t
implies that at later times� ��t ! �t� should dominate both� T�t��t� �� ��t ! �t�
by to our notations�� and T�t�c� �� c since T�t is assumed constant�preserving��
Thus ��t ! �t� � ��t ! �t� � c and hence

��t ! �t� � c� ��t� � c

�t
� ��t ! �t�� ��t�

�t
�

Let �t � �� By denition� the LHS gives �t���t� � c� the RHS is governed by its
Cauchy problem� �t��t� � �rx � A���t�� � rx � A���t� � c�� We conclude that an
arbitrary t � �

�t���t� � c� !rx �A���t� � c� � �� ������

Similar arguments yield

��t���t� � c� !rx �A���t� � c� � �� ������

Together� the last two inequalities add up to the entropy inequality �������

Early constructions of approximate solutions for scalar conservation laws� most
notably � nite�di�erence approximations� utilized this monotonicity property to
construct convergent schemes� ����� ������ Monotone approximations are limited�
however� to rst�order accuracy ����� At this stage we note that the limitation of
rst�order accuracy for monotone approximations� can be avoided if L��contractive
solutions are replaced with �the weaker� requirement of bounded variation solutions�

� TV bound� The solution operator associated with ����� is translation invariant�
Comparing the scalar entropy solution� ��t� ��� with its translate� ��t� � ! �x��
the L��contraction statement in ����� yields the TV bound� ������

k��t� ��kBV � k�����kBV � k��t� ��kBV 	� sup
�x���

k��t� �! �x�� ��t� ��kL�
�x

� ������

Construction of scalar entropy solutions by TV�bounded approximations were used
in the pioneering works of Ol$einik ������ Vol�pert ������ Kru$zkov ���� and Crandall
����� In the one�dimensional case� the TVD property ������ enables to construct
convergent di�erence schemes with high�order �� �� resolution Harten initiated the
construction of high�resolution TVD schemes in ����� following the earlier works ����
����� A whole generation of TVD schemes was then developed during the beginning
of the ���s some aspects of these developments can be found in x����

��



One dimensional systems �m � �� d � ��
We focus our attention on one�dimensional hyperbolic systems governed by

�t� ! �xA��� � �� �t� x� � R
�
t � Rx � ������

and subject to initial condition� ���� x� � ���x�� The hyperbolicity of the system
������ is understood in the sense that its Jacobian� A����� has a complete real
eigensystem� �ak���� rk����� k � �� � � � �m� For example� the existence of a convex
entropy function guarantees the symmetry of A���� �� w�r�t� �������� and hence the
complete real eigensystem� For most of our discussion we shall assume the stronger
strict hyperbolicity� i�e� distinct real eigenvalues� ak��� �� aj����

A fundamental building block for the construction of approximate solutions in
the one�dimensional case is the solution of Riemann�s problem�

Riemann�s problem
Here one seeks a weak solution of ������ subject to the piecewise constant initial
data

��x� �� �

�
��� x 	 �
�r� x � ��

������

The solution is composed of m simple waves� each of which is associated with one
�right��eigenpair� �ak���� rk����� � � k � m� There are three types of such waves	
if the k�th eld is genuinely nonlinear in the sense that rk � r�ak �� �� these are
either k�shock or k�rarefaction waves or� if the k�th eld is linearly degenerate in
the sense that rk � r�ak � �� this is a k�th contact wave�

These three simple waves are centered� depending on 
 � x
t

�which is to be
expected from the dilation invariance of ��������������� The structure of these three
centered waves is as follows	

� A k�shock discontinuity of the form

��
� �

�
��� 
 	 s
�r� 
 � s 

here s denotes the shock speed which is determined by a Rankine�Hugoniot
relation so that ak���� � s � ak��r��

� A k�rarefaction wave� ��
�� which is directed along the corresponding k�th eigen�
vector� %��
� � rk���
��� Here rk is the normalized k�eigenvector� rk � rak � �
so that the gap between ak���� 	 ak��r� is lled with a fan of the form

ak���
�� �

�
ak����� 
 	 ak����

� ak���� 	 
 	 ak��r�
ak��r�� ak��r� 	 


� A k�contact discontinuity of the form

��
� �

�
��� 
 	 s
�r� 
 � s

where s denotes the shock speed which is determined by a Rankine�Hugoniot
relation so that ak���� � s � ak��r��

��



We are concerned with admissible systems � systems which consist of either gen�
uinely nonlinear or linearly degenerate elds� We refer to ���� for the full story
which is summarized in the celebrated

Theorem ��� �Lax solution of Riemann�s problem� The strictly hyperbolic
admissible system ������ subject to Riemann initial data ����� with �� � �r su��
ciently small� admits a weak entropy solution� which consists of shock� rarefaction�
and contact�waves�

For a detailed account on the solution of Riemann problem consult ����� An
extension to a generalized Riemann problem subject to piecewise�linear initial data
can be found in ���� ����� In this context we also mention the approximate Riemann
solvers� which became useful computational alternatives to Lax�s construction� Roe
introduced in ����� a linearized Riemann solver� which resolves jumps discontinuities
solely in terms of shock waves� Roe�s solver has the computational advantage of
sharp resolution �at least when there is one dominant wave per computational
cell� it may lead� however� to unstable shocks� Osher and Solomon in ����� used�
instead� an approximate Riemann solver based solely on rarefaction fans one then
achieves stability at the expense of deteriorated resolution of shock discontinuities�

Godunov� Lax�Friedrichs and Glimm schemes
We let ��x�t� x� be the entropy solution in the slab tn � t 	 t!�t� subject to piece�
wise constant data ��x�t � tn� x� �

P
�n����x�� Here ���x� 	� �fjx���xj��x��g

denotes the usual indicator function� Observe that in each slab� ��x�t� x� consists
of successive noninteracting Riemann solutions� at least for a su�ciently small time
interval �t� for which the CFL condition� �t��xmax jak���j � �

�
is met� In order to

realize the solution in the next time level� tn�� � tn!�t� it is extended with a jump
discontinuity across the line tn��� by projecting it back into the nite�dimensional
space of piecewise constants� Di�erent projections yield di�erent schemes� We recall
the basic three�

Godunov Scheme� Godunov scheme ���� sets

��x�tn��� x� �
X
�

&�n��� ���x��

where &�n��� stands for the cell�average�

&�n��� 	�
�

�x

Z
x

��x�tn�� � �� x����x�dx�

which could be explicitly evaluated in terms of the �ux of Riemann solution
across the cell interfaces at x�� �

�
�

&�n��� � &�n� � �t

�x

n
A���x�tn�

�
� � x�� �

�
��A���x�tn�

�
� � x�� �

�
�
o
� ������

Godunov scheme had a profound impact on the eld of Computational Fluid Dy�
namics� His scheme became the forerunner for a large class of upwind nite�volume
methods which are evolved in terms of �exact or approximate� Riemann solvers�
In my view� the most important aspect of what Richtmyer � Morton describe as

��



Godunov�s �ingenious method� ������ p� ������ lies in its global point of view	 one
does not simply evolve discrete pointvalues f�n� g� but instead� one evolves a globally
dened solution� ��x�t� x�� which is realized in terms of its discrete averages� f&�n�g�

Lax�Friedrichs Scheme� If the piecewise constant projection is carried out over
alternating staggered grids�&�n��

�� �
�

	� �
�x

R
x
��x�tn����� x���� �

�
�x�dx� then one

e�ectively integrates �over the Riemann fan� which is centered at �x�� �
�
� tn��

This recovers the Lax�Friedrichs �LxF� scheme� ����� with an explicit recursion
formula for the evolution of its cell�averages which reads

&�n��
�� �

�

�
&�n� ! &�n���

�
� �t

�x

n
A�&�n�����A�&�n� �

o
� ������

The Lax�Friedrichs scheme had a profound impact on the construction and
analysis of approximate methods for time�dependent problems� both linear prob�
lems ���� and nonlinear systems ����� The Lax�Friedrichs scheme was and still is the
stable� all purpose benchmark for approximate solution of nonlinear systems�

Both Godunov and Lax�Friedrichs schemes realize the exact solution operator
in terms of its nite�dimensional cell�averaging projection� This explains the versa�
tility of these schemes� and at the same time� it indicates their limited resolution
due to the fact that waves of di�erent families that are averaged together at each
computational cell�

Glimm Scheme� Rather than averaging� Glimm�s scheme� ����� keeps its sharp
resolution by randomly sampling the evolving Riemann waves�

��x�tn��� x� �
X
�

��x�tn�� � �� x�� �
�

! rn�x���� �
�

�x��

This denes the Glimm�s approximate solution� ��x�t� x�� depending on the
mesh parameters �x � �t� and on the set of random variable frng� uni�
formly distributed in �� �

�
� �
�
�� In its deterministic version� Liu ����� employs

equidistributed rather than a random sequence of numbers frng�

Glimm solution� ��x�t� x�� was then used to construct a solution for one�dimensional
admissible systems of conservation laws� Glimm�s celebrated theorem� ����� is still
serving today as the cornerstone for existence theorems which are concerned with
general one�dimensional systems� e�g� �����������������

Theorem ��� �Existence in the large�� There exists a weak entropy solution�
��t� �� � L����� T �� BV � L��Rx��� of the strictly hyperbolic system
������ subject to initial conditions with su�ciently small variation�
k�����kBV �L��Rx� � ��

Glimm�s scheme has the advantage of retaining sharp resolution� since in each
computational cell� the local Riemann solution is realized by a randomly chosen
�physical� Riemann wave� Glimm�s scheme was turned into a computational tool
known as the Random Choice Method �RCM� in ����� and it serves as the building
block inside the front tracking method of Glimm and his co�workers� ����� �����

��



Multidimensional systems �m � �� d � ��
Very little rigor is known on m conservation laws in d spatial dimensions once
�m����d��� becomes positive� i�e�� general multidimensional systems� We address
few major achievements�

Short time existence� For Hs�initial data ��� with s � d
�
� an Hs�solution exists

for a time interval ��� T �� with T � T �k��kHs�� consult e�g� ��������� x�����

Short time existence � piecewise analytic data� An existence resultconjectured
by Richtmyer was proved by Harabetian in terms of a Cauchy�Kowalewski type
existence result �����

Short time stability � piecewise smooth shock data� Existence for piecewise
smooth initial data where smoothness regions are separated by shock disconti�
nuities was studied in ������������

Riemann invariants� The gradients of Riemann invariants enable us to �diag�
onalize� one�dimensional systems� More is known about � � � systems in one
space dimension thanks to the existence of Riemann invariants� Consult �����
������ ������ Beyond m � � equations� only special systems admits a full set of
Riemann invariants �consult ����� and the references therein��

Riemann problem� Already in the d � ��dimensional case� the collection of sim�
ple waves and their composed interaction in the construction of Riemann solu�
tion �� subject to piecewise constant initial data�� is considerably more compli�
cated than in the one�dimensional setup� We refer to the recent book ���� for a
detailed discussion�

Compressible Euler equations� These system of m � � equations governing
the evolution of density� ��vector of momentum and Energy in d � ��space
variables was � and still is� the prime target for further developments in our un�
derstanding of general hyperbolic conservation laws� We refer to Majda� ������
for a denitive summary of this aspect�

��� Total Variation Bounds

Finite Di�erence Methods
We begin by covering the space and time variables with a discrete grid	 it consists
of time�steps of size �t and rectangular spatial cells of size �x 	� ��x�� � � � � �xd��
Let C� denotes the cell which is centered around the gridpoint x� � ��x 	�
����x�� � � � � �d�xd�� and let f�n� g denote the gridfunction associated with this
cell at time tn � n�t� The gridfunction f�n�g may represent approximate grid�
values� ��tn� x��� or approximate cell averages� &��tn� x�� �as in the Godunov and
LxF schemes�� or a combination of higher moments� e�g�� �����

To construct a nite di�erence approximation of the conservation law ������
one introduce a discrete numerical �ux� H��n� 	� �H���

n�� � � � � Hd��
n��� where

Hj��
n� � Hj��

n
��p� � � � � �

n
��q� is an approximation to the Aj��

n� �ux across the
interface separating the cell C� and its neighboring cell on the xj �s direction�
C��ej � Next� exact derivatives in ����� are replaced by divided di�erences	 the time�
derivative is replaced with forward time di�erence� and spatial derivatives are re�
placed by spatial divided di�erences expressed in terms of D�xj�� 	� ����ej �
�����xj � We arrive at the nite�di�erence scheme of the form

��



�n��� � �n� ��t

dX
j��

D�xjHj��
n
��p� � � � � �

n
��q�� ������

The essential feature of the di�erence schemes ������ is their conservation
form	 perfect derivatives in ����� are replaced here by �perfect di�erences�� It im�
plies that the change in mass over any spatial domain ��

P
f�jx�	�g �

n��
� jC� j �P

f�jx�	�g �
n
� jC� j� depends solely on the discrete �ux across the boundaries of that

domain� This is a discrete analogue for the notion of a weak solution of ������ In
their seminal paper ����� Lax � Wendro� introduced the notion of conservative
schemes� and prove that their strong limit solutions are indeed weak solutions of
������

Theorem ��� �Lax 	 Wendro
 ����� Consider the conservative di
erence scheme
������ with consistent numerical �ux so that Hj��� � � � � �� � Aj���� Let �t � � with
�xed grid�ratios j 	� �t

�xj
� Constj � and let ��t � f�n�g denote the corresponding

solution parameterized w�r�t� the vanishing grid�size�� Assume that ��t converges
strongly� s lim��t�tn� x�� � ��t� x�� then ��x� t� is a weak solution of the conserva�
tion law �����

The Lax�Wendro� theorem plays a fundamental role in the development of the
so called �shock capturing� methods� Instead of tracking jump discontinuities ��
by evolving the smooth pieces of the approximate solution on both sides of such
discontinuities�� conservative schemes capture a discretized version of shock dis�
continuities� Equipped with the Lax�Wendro� theorem� it remains to prove strong
convergence� which leads us to discuss the compactness of f�n� g�

TVD schemes �m � d � ��
We deal with scalar gridfunctions� f�n� g� dened on the one�dimensional Cartesian
grid x� 	� ��x� tn 	� n�t with xed mesh ratio  	� �t

�x
� The total variation

of such gridfunction at time�level tn is given by
P

�
j��n

�� �
�
j� where ��n

�� �
�

	�

�n��� � �n� � It is said to be total�variation�diminishing �TVD� ifX
�

j��n�� �
�
j �
X
�

j����� �
�
j� ������

Clearly� the TVD condition ������ is the discrete analogue of the scalar TV�bound
������� Approximate solutions of di�erence schemes which respect the TVD prop�
erty ������� share the following desirable properties	

� Convergence � by Helly�s compactness argument� the piecewise�constant ap�
proximate solution� ��x�tn� x� �

P
�
�n����x�� converges strongly to a limit

function� ��tn� x� as we rene the grid� �x � �� This together with equiconti�
nuity in time and the Lax�Wendro� theorem� yield a weak solution� ��t� x�� of
the conservation law ������

� Spurious oscillations � are excluded by the TVD condition �������

��



� Accuracy � is not restricted to the rst�order limitation of monotone schemes�
To be more precise� let us use ��t�t� x� to denote a global realization �say �
piecewise polynomial interpolant� of the approximate solution �n� � ��t�tn� x���
The truncation error of the di�erence scheme is the amount by which the
approximate solution� ��t�t� x�� fails to satisfy the conservation laws ������ The
di�erence scheme is ��order accurate if its truncation error is� namely�

k�t��t !rx �A���t�k � O���t���� ������

�Typically� a strong norm k � k is used which is appropriate to the problem in
general� however� accuracy is indeed a norm�dependent quantity�� Consider for
example� monotone di�erence schemes� Monotone schemes are characterized by
the fact that �n��� is an increasing function of the preceding gridvalues which
participate in its stencil ������� �n��p� � � � � �

n
��q �� so that the monotonicity

property ������ holds� � A classical result of Harten� Hyman � Lax ���� states
that monotone schemes are at most rst�order accurate� TVD schemes� how�
ever� are not restricted to this rst�order accuracy limitation� at least in the
one�dimensional case�� We demonstrate this point in the context of second�
order TVD di�erence schemes�

We distinguish between two types of TVD schemes� depending on the size of their
stencils�

Three�point schemes
Three�point schemes �p � q � � in ������� are the simplest ones � their stencil
occupies the three neighboring gridvalues� �n���� �

n
� � �

n
���� Three�point conservative

schemes take the form

�n��� � �n� � 

�

n
A��n�����A��n����

o
!

�

�

n
Qn
�� �

�
��n�� �

�
�Qn

�� �
�
��n�� �

�

o
�

������

Thus� three�point schemes are identied solely by their numerical viscosity coe��
cient� Qn

�� �
�

� Q��n� � �
n
����� which characterize the TVD condition

jan�� �
�
j � Qn

�� �
�
� �� an�� �

�
	�

�An
�� �

�

��n
�� �

�

� ������

The schemes of Roe ������ Godunov ����� and Engquist�Osher �EO� ����� are canoni�
cal examples of upwind schemes� associated with �increasing amounts of� numerical
viscosity coe�cients� which are given by�

QRoe
�� �

�
� jan�� �

�
j� ������

QGodunov
�� �

�
�  max

�	C
���

�

h
A��n����� �A��� ! A��n� �

��n
�� �

�

i
� ������

QEO
�� �

�
� 

�

��n
�� �

�

Z �n
���

�n�

jA����jd�� ������

� Consult ����� regarding the rst�order accuracy limitation for multidimensional
d � � TVD schemes�
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The viscosity coe�cients of the three upwind schemes are the same� Qn
�� �

�
�

jan
�� �

�
j� except for their di�erent treatment of sonic points �where a��n� ��a��n���� 	

��� The Lax�Friedrichs �LxF� scheme ������ is the canonical central scheme� It has
a larger numerical viscosity coe�cient�

QLxF
�� �

�
� �� ������

All the three�point TVD schemes are limited to rst�order accuracy� Indeed�
condition ������ is necessary for the TVD property of three�point schemes� ������
and hence it excludes numerical viscosity associated with the second�order Lax�
Wendro� scheme� ����� QLW

�� �
�

� ��an
�� �

�
��� Therefore� scalar TVD schemes with

more than rst�order accuracy require at least ve�point stencils�

Five�point schemes
Following the in�uential works of Boris � Book ���� van Leer ����� Harten �����
Osher ������ Roe ����� and others� many authors have constructed second order
TVD schemes� using ve�point �� or wider� stencils� For a more complete account
of these works we refer to the recent books by LeVeque� ������ and Godlewski �
Raviart� ����� A large number of these schemes were constructed as second�order
upgraded versions of the basic three�point upwind schemes� The FCT scheme of
Boris � Book� ���� van Leer�s MUSCL scheme ����� and the ULTIMATE scheme of
Harten� ����� are prototype for this trend� In particular� in ����� Harten provided a
useful su�cient criterion for the scalar TVD property� which led to the development
of many non�oscillatory high�resolution schemes in the mid����s�

Higher order central schemes can be constructed by upgrading the staggered
LxF scheme ������� This will be the subject of our next lecture II� Here we quote a
ve�point TVD scheme of Nessyahu�Tadmor �NT� ����� � a second�order predictor�
corrector upgrade of the staggered LxF scheme�

�
n� �

�
� � &�n� � 

�
�A�&�n� ���� ������

&�n��
�� �

�

�
&�n� ! &�n���

�
!

� ��n� �� � ��n����
�

�
� �t

�x

n
A��

n� �
�

��� ��A��
n� �

�
� �

o
� ������

Here� fw��g denotes the discrete numerical derivative of an arbitrary gridfunc�
tion fw�g� The choice w�� � � recovers the original rst�order LxF scheme �������
Second�order accuracy requires w�� � �x�xw�x��� To guarantee the non�oscillatory
properties is a key issue in the construction of higher �� than rst�order��� resolu�
tion schemes this requires more than just the naive divided di�erences as discrete
numerical derivatives� A prototype example is the so called min�mod limiter�

w�� �
�

�
�s�� �

�
! s�� �

�
� �minfj�w�� �

�
j� j�w�� �

�
jg� s�� �

�
	� sgn��w�� �

�
��

������

�We shall say more on �nonlinear� limiters like the min�mod below�� With this
choice of a limiter� the central NT scheme ������������� satises the TVD property�
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and at the same time� it retains formal second order accuracy �at least away from
extreme gridvalues� �� � where ��� � s�� �

�
! s�� �

�
� ���

We conclude we few additional Remarks�

Limiters A variety of discrete TVD limiters like ������ was explored during the
���s� e�g� ����� and the references therein� For example� a generalization of ������
is provided by the family of min�mod limiters depending on tuning parameters�
� 	 ��� �

�
	 ��

w����� �
�

�
�s�� �

�
! s�� �

�
��

�minf��� �
�
j�w�� �

�
j� �

�
jw��� � w���jg� ������

An essential feature of these limiters is co�monotonicity	 they are �tailored�
to produce piecewise�linear reconstruction of the form

P
�w� ! �

�x
w���x �

x������x�� which is co�monotone with �and hence� share the TVD property
of �� the underlying piecewise�constant approximation

P
w����x�� Another

feature is the limiting property at extrema gridvalues �where w�� � ��� which is
necessary in order to satisfy the TVD property ������� In this context� limiters
can viewed as extrema detectors	 the detection is global� yet they are activated
locally �at extrema gridvalues�� The study of the TVD property along these
lines can be found in ������ In particular� limiters are necessarily nonlinear in
the sense of their stencils� dependence on the discrete gridfunction�

Systems � one�dimensional Godunov�type schemes The question of conver�
gence for approximate solution of hyperbolic systems is tied to the question of
existence of an entropy solution � in both cases there are no general theories
with m � � equations�� Nevertheless� the ingredients of scalar high�resolution
schemes were successfully integrated in the approximate solution of system of
conservation laws�
Many of these high�resolution methods for systems� employ the Godunov ap�
proach� where one evolves a globally dened approximate solution�
��x�t� x�� which is governed by iterating the evolution�projection cycle�

��x��� t� �

���Tft�tn��g���� tn���� tn�� 	 t 	 tn � n�t�

P�x���� tn � ��� t � tn�

Here� Tt denotes the evolution operator �see ������� and P�x is an arbitrary�
possibly nonlinear conservative projection� which which is realized as a piecewise
polynomial�

��x�x� tn� �
X
j

pj�x��j�x�� &p��x�� � &�n� � ������

Typically� this piecewise polynomial approximate solution is reconstructed from
the previously computed cell averages� f&�n�g� and in this context we may� again�
distinguish between two main classes of methods	 upwind and central methods�

� There is a large literature concerning two equations � the � � � p�system and
related equations are surveyed in ������

��



Upwind schemes evaluate cell averages at the center of the piecewise polynomial
elements integration of ������ over C� � �tn� tn��� yields

&�n��� � &�n� � �

�x

�Z tn��

	�tn

f����� x�� �
�
� ��d� �

Z tn��

	�tn

f����� x�� �
�
� ��d�

�
�

This in turn requires the evaluation of �uxes along the discontinuous cell in�
terfaces� �� � x�� �

�
�� Consequently� upwind schemes must take into account

the characteristic speeds along such interfaces� Special attention is required at
those interfaces in which there is a combination of forward� and backward�going
waves� where it is necessary to decompose the �Riemann fan� and determine
the separate contribution of each component by tracing �the direction of the
wind�� The original rst�order accurate Godunov scheme ������ is the fore�
runner for all other upwind Godunov�type schemes� A variety of second� and
higher�order sequels to Godunov upwind scheme were constructed� analyzed
and implemented with great success during the seventies and eighties� start�
ing with van�Leer�s MUSCL scheme ����� followed by ���������������� These
methods were subsequently adapted for a variety of nonlinear related systems�
ranging from incompressible Euler equations� ���� ����� to reacting �ows� semi�
conductors modeling� � � � � We refer to �������� and the references therein a for
a more complete accounts on these developments�
In contrast to upwind schemes� central schemes evaluate staggered cell averages
at the breakpoints between the piecewise polynomial elements�

&�n��
�� �

�

� &�n�� �
�
� �

�x

�Z tn��

	�tn

f��� ��x�����d� �
Z tn��

	�tn

f����� x���d�

�
�

Thus� averages are integrated over the entire Riemann fan� so that the corre�
sponding �uxes are now evaluated at the smooth centers of the cells� ��� x���
Consequently� costly Riemann�solvers required in the upwind framework� can
be now replaced by straightforward quadrature rules� The rst�order Lax�
Friedrichs �LxF� scheme ������ is the canonical example of such central dif�
ference schemes� The LxF scheme �like Godunov�s scheme� is based on a piece�
wise constant approximate solution� p��x� � &�� � Its Riemann�solver�free recipe�
however� is considerably simpler� Unfortunately� the LxF scheme introduces ex�
cessive numerical viscosity �already in the scalar case outlined in x��� we have
QLxF � � � QGodunov�� resulting in relatively poor resolution� The central
scheme ������������� is a second�order sequel to LxF scheme� with greatly im�
proved resolution� An attractive feature of the central scheme ������������� is
that it avoids Riemann solvers	 instead of characteristic variables� one may use
a componentwise extension of the non�oscillatory limiters �������

Multidimensional systems There are basically two approaches�
One approach is to reduce the problem into a series of one�dimensional prob�
lems� Alternating Direction �ADI� methods and the closely related dimensional
splitting methods� e�g�� ����� x������� are e�ective� widely used tools to solve
multidimensional problems by piecing them from one�dimensional problems �
one dimension at a time� Still� in the context of nonlinear conservation laws�
dimensional splitting encounters several limitations� ����� A particular instruc�
tive example for the e�ect of dimensional splitting errors can be found in the

�	



approximate solution of the weakly hyperbolic system studied in ��������� x�����
The other approach is �genuinely multidimensional�� There is a vast litera�
ture in this context� The beginning is with the pioneering multidimensional
second�order Lax�Wendro� scheme� ����� To retain high�resolution of multidi�
mensional schemes without spurious oscillations� requires one or more of sev�
eral ingredients	 a careful treatment of waves propagations ��unwinding��� or
alternatively� a correctly tuned numerical dissipation which is free of Riemann�
solvers ��central di�erencing��� or the use of adaptive grids �which are not�
necessarily rectangular�� ��� � Waves propagation in the context of multidimen�
sional upwind algorithms were studied in ���������������� � � � � Another �gen�
uinely multidimensional� approach can be found in the positive schemes of �����
The pointwise formulation of ENO schemes due to Shu � Osher� ����������
is another approach which avoids dimensional splitting	 here� the reconstruc�
tion of cell�averages is bypassed by the reconstruction pointvalues of the �uxes
in each dimension the semi�discrete �uxed are then integrated in time us�
ing non�oscillatory ODEs solvers �which are brie�y mentioned in x��� below��
Multidimensional non�oscillatory central scheme was presented in ����� gen�
eralizing the one�dimensional ������������� consult ���������� for applications
to the multidimensional incompressible Euler equations� Finite volume meth�
ods� ���������������� � and nite�element methods �the streamline�di�usion and
discontinuous Galerkin schemes� ���������������������� have the advantage of a
�built�in� recipe for discretization over general triangular grids �we shall say
more on these methods in x��� below�� Another �genuinely multidimensional�
approach is based on a relaxation approximation was introduced in ����� It
employs a central scheme of the type ������������� to discretize the relaxation
models models� ������ ����� ������ � � � �

TVD 	lters
Every discretization method is associated with an appropriate nite�dimensional
projection� It is well known that linear projections which are monotone �or equiv�
alently� positive�� are at most rst�order accurate� ����� The lack of monotonicity
for higher order projections is re�ected by spurious oscillations in the vicinity of
jump discontinuities� These are evident with the second�order �and higher� cen�
tered di�erences� whose dispersive nature is responsible to the formation of binary
oscillations ����������� With highly�accurate spectral projections� for example� these
O��� oscillations re�ect the familiar Gibbs phenomena�

TVD schemes avoid spurious oscillations � to this end they use the necessarily
nonlinear projections �expressed in terms of nonlinear limiters like those in ��������
TVD lters� instead� suppress spurious oscillations� At each time�level� one post�
process the computed �possibly oscillatory� solution f��tn�g� In this context we
highlight the following�

� Linear �lters� Consider linear convection problems with discontinuous initial
data� Approximate solutions of such problems su�er from loss of accuracy due
to propagation of singularities and their interference over domain of dependence
of the numerical scheme� Instead� one can show� by duality argument� that the
numerical scheme retains its original order of accuracy when the truncation in
������ is measured w�r�t� su�ciently large negative norm� ������ Linear lters then
enable to accurately recover the exact solution in any smoothness region of the exact
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solution� bounded away from its singular support� These lters amount to nite�
order molliers ������ or spectrally accurate molliers� ������ ����� which accurately
recover pointvalues from high�order moments�
� Arti�cial compression� Articial compression was introduced by Harten

���� as a method to sharpen the poor resolution of contact discontinuities� �Typ�
ically� the resolution of contacts by ��order schemes di�uses over a fan of width
��t������������ The idea is to enhance the focusing of characteristics by adding
an anti�di�usion modication to the numerical �uxes	 if we let H�� �

�
denote the

numerical �ux of a three�point TVD scheme ������� then one replaces it with a mod�
ied �ux� H�� �

�
� H�� �

�
! 'H�� �

�
� which is expressed in terms of the min�mod

limiter ������

'H�� �
�

	�
�


f��� ! ����� � sgn������

�
�j����� � ��� jg� ������

Articial compression can be used as a second�order TVD lter as well� Let
Q�� �

�
be the numerical viscosity of a three�point TVD scheme ������� Then� by

adding an articial compression modication ������ which is based on the ��limiters
������� ��� � ������ with ��� �

�
	� Q�� �

�
� �a�

�� �
�

� one obtains a second�order TVD

scheme� ����� ������ Thus� in this case the articial compression ������ can be viewed
as a second�order anti�di�usive TVD lter of rst�order TVD schemes

�n��� �� �n��� � f 'H�� �
�

��n�� 'H�� �
�
��n�g� ������

� TVD �lters� A particularly useful and e�ective� general�purpose TVD lter
was introduced by Engquist et� al� in ���� it proceeds in three steps�
fig �Isolate extrema�� First� isolate extrema cells where ��n

�� �
�
���n

�� �
�
	 ��

fiig �Measure local oscillation�� Second� measure local oscillation� osc� � by setting

osc� 	� minfm� �
�

�
M�g� fm�

M�
g � fmin

max
g���n�� �

�
� ��n�� �

�
�

fiiig �Filtering�� Finally� oscillatory minima �respectively � oscillatory maxima� are
increased �and respectively� increased� by updating
�n�  �n� ! sgn���n

���
�
�osc� � and the corresponding neighboring gridvalues is mod�

ied by subtracting the same amount to retain conservation� This post�processing
can be repeated� if necessary� and one may use a local maximum principle� minj�

n
j �

�n� � maxj�
n
j as a stopping criterion� In this case� the above lter becomes TVD

once the binary oscillations are removed� ������

TVB approximations �m � �� d � ��

One sided stability
As an example for Total variation Bounded �TVB� approximations� we begin with
the example of approximate solutions satisfying the one�sided Lip� stability con�
dition�

Let f���t� x�g be a family of approximate solutions� tagged by their small�scale
parameterization� �� To upper�bound the convergence rate of such approximations�
we shall need the usual two ingredients of stability and consistency�
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� Lip��stability� The family f��g is Lip��stable if

k���t� ��kLip� 	� sup
x

�x�
��t� x� � Const� ������

This notion of Lip��stability is motivated by Ol$einik�s One�Sided Lipschitz Con�
dition �OSLC�� �x�t� �� � Const� which uniquely identies the entropy solution of
convex conservation laws� ������� with scalar A�� � � �we refer to ����� for a recent
contribution concerning the one�sided stability of one�dimensional systems�� Since
the Lip���semi��norm dominates the total�variation�

k���t� ��kBV � Const�k���t� ��kLip� ! k������kL� � Const � �jsuppx�
��t� ��j�

f��g are TVB and by compactness� convergence follows� Equipped with Lip��
stability� we are able to quantify this convergence statement� To this end� we measure
the local truncation error in terms of

� Lip��consistency� The family f��g is Lip��consistent of order � if

k�t�� ! �xA����kLip��t
x� � �� ������

It follows that the stability!consistency in the above sense� imply the conver�
gence of f��g to the entropy solution� �� and that the following error estimates hold
������ ������

k���t� ��� ��t� ��kWs�Lp�x�� � �
��sp
�p � �� � s � ��p� ������

The case �s� p� � ���� �� corresponds to a sharp Lip��error estimate of order �
� the Lip��size of the truncation in ������ the case �s� p� � ��� �� yields an L��
error estimate of order one�half� in agreement with Kuznetsov�s general convergence
theory� �����

Multidimensional extensions to convex Hamilton�Jacobi equations are treated
in ������ We note in passing that the requirement of Lip� stability restricts our
discussion to convex problems at the same time� it yields more than just conver�
gence� Indeed� the above error estimate� as well as additional local error estimates
will discussed in lecture IV�

Higher resolution schemes �with three letters acronym�
We have already mentioned the essential role played by nonlinear limiters in TVD
schemes� The mechanism in these nonlinear limiters is switched on in extrema cells�
so that the zero discrete slope �� � � avoids new spurious extrema� This� in turn�
leads to deteriorated rst�order local accuracy at non�sonic extrema� and global
accuracy is therefore limited to second�order��

� The implicit assumption is that we seek an approximation to piecewise�smooth
solutions with nitely many oscillations� ������ The convergence theories apply
to general BV solutions� Yet� general BV solutions cannot be resolved in actual
computations in terms of �classical� macroscopic discretizations � nite�di�erence�
nite�element� spectral methods� etc� Such methods can faithfully resolve piece�
wise smooth solutions�
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To obtain an improved accuracy� one seeks a more accurate realization of the
approximate solution� in terms of higher �than rst�order� piecewise polynomials

��x�tn� x� �
X
�

p��x����x�� p��x� �
X
j

��j�� �
x� x�
�x

�j�j(� ������

Here� the exact solution is represented in a cell C� in terms of an r�order polynomial
p� � which is reconstructed from the its neighboring cell averages� f&���g� If we let
��x�t � tn� �� denote the entropy solution subject to the reconstructed data at
t � tn� P�x��tn� ��� then the corresponding Godunov�type scheme governs the
evolution of cell averages

&�n��� 	�
�

�x

Z
x

��x�tn�� � �� x����x�dx� ������

The properties of Godunov�type scheme are determined by the polynomial re�
construction should meet three contradicting requirements	
fig Conservation	 p��x� should be cell conservative in the sense that

�RC� p��x� � �RC� ���x�� This tells us that P�x is a �possibly nonlinear� projection�

which in turn makes ������ a conservative scheme in the sense of Lax�Wendro��
�������

fiig Accuracy	 �
�j�
� � ��x�x�j��tn� x���

At this stage� we have to relax the TVD requirement� This brings us to the third
requirement of
fiiig TVB bound	 we seek a bound on the total variation on the computed

solution� Of course� a bounded variation� k��x�tn� ��kBV � Const� will su�ce for
convergence by L��compactness arguments �Helly�s theorem��

The �re��construction of non�oscillatory polynomials led to new high�resolution
schemes� In this context we mention the following methods �which were popularized
by their trade�mark of three�letters acronym ����	 the Piecewise�Parabolic Method
�PPM� ����� the Uniformly Non�Oscillatory �UNO� scheme ����� and the Essentially
Non�Oscillatory schemes �ENO� of Harten et� al� ����� The particular topic of ENO
schemes is covered in C��W� Shu�s lectures elsewhere in this volume�

There is large numerical evidence that these highly�accurate methods are TVB
�and hence convergent�� at least for a large class of piecewise�smooth solutions� We
should note� however� that the convergence question of these schemes is open� �It
is my opinion that new characterizations of the �piecewise� regularity of solutions
to conservation laws� e�g�� ���������� together with additional tools to analyze their
compactness� are necessary in order to address the questions of convergence and
stability of these highly�accurate schemes��

There are alternative approach to to construct high�resolution approximations
which circumvent the TVD limitations� We conclude by mentioning the following
two�
One approach is to evolve more than one�piece of information per cell� This is
fundamentally di�erent from standard Godunov�type schemes where only the cell
average is evolved �and higher order projections are reconstructed from these aver�
ages � one per cell�� In this context we mention the quasi�monotone TVB schemes
introduced in ����� Here� one use a TVD evolution of cell averages together with
additional higher moments� Another instructive example for this approach is found
in the third�order TVB scheme� �����	 in fact� Sanders constructed a third�order
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non�expansive scheme �circumventing the rst�order limitation of ������ by using
a � � � system which governs the rst two moments of the scalar solution� More
recently� Bouchut et� al� ���� constructed a second�order MUSCL scheme which re�
spects a discrete version of the entropy inequality ����� w�r�t all Kru$zkov�s scalar
entropy pairs in ����� this circumvents the second�order limitation of Osher � Tad�
mor ����� Theorem ����� by evolving both � the cell average and the discrete slope
in each computational cell�

Another approach to enforce a TVB bound on higher�� ���resolution schemes�
makes use of gridsize�dependent limiters� ��j� � ��j�f&�n� �xg� such that the follow�
ing holds� e�g�� ������

k��x�tn��� ��kBV � k��x�tn��� ��kBV ! Const ��x�

Such �x�dependent limiters fail to satisfy� however� the basic dilation invariance of
�������������� �t� x� �ct� cx��

Time discretizations
One may consider separately the discretization of time and spatial variables� Let
PN denote a �possibly nonlinear� nite�dimensional spatial discretization of ����� 
this yields an N �dimensional approximate solution� �N�t�� which is governed by the
system of N nonlinear ODEs

d

dt
�N�t� � PN ��N�t��� ������

System ������ is a semi�discrete approximation of ������ For example� if we let
PN � P�x� N � ��x��d� to be one of the piecewise�polynomial reconstructions
associated with Godunov�type methods in ������� then one ends up with a semi�
discrete nite�di�erence method� the so called method of lines� In fact� our discus�
sion on streamline�di�usion and spectral approximations in x��� and x��� below will
be primarily concerned with such semi�discrete approximations�

An explicit time discretization of ������ proceeds by either a multi�level or a
Runge�Kutta method� A CFL condition should be met� unless one accounts for
wave interactions� consult ������ For the construction of non�oscillatory schemes�
one seeks time discretizations which retain the non�oscillatory properties of the spa�
tial discretization� PN � In this context we mention the TVB time�discretizations of
Shu � Osher� ���������������� Here� one obtains high�order multi�level and Runge�
Kutta time discretizations as convex combinations of the standard forward time
di�erencing� which amounts to the rst�order accurate forward Euler method� Con�
sequently� the time discretizations ��������� retain the nonoscillatory properties of
the low�order forward Euler time di�erencing � in particular� TVD)TVB bounds�
and at the same time� they enable to match the time accuracy with the high�order
spatial accuracy�

Cell entropy inequality
Approximate solutions with bounded variation �obtained by TVD)TVB schemes�
converge to a weak solution the question of uniqueness is addressed by an en�
tropy condition� In the context of nite�di�erence scheme� one seeks a cell entropy

��



inequality � a conservative discrete analogue of the entropy inequality ������

���n��� � � ���n� ���t

dX
j��

D�xjGj��
n
��p� � � � � �

n
��q�� ������

By arguments *a la Lax � Wendro� �Theorem ����� any approximate solution which
satises ������ with a consistent numerical entropy �ux� Gj��� � � � � �� � Fj���� its
strong limit satises ������ which in turn yields uniqueness� at least in the scalar case�
Crandall � Majda� ����� following Harten� Hyman � Lax in ����� were the rst to
implement this approach in the context of monotone di�erence schemes �in fact� the
abstract setup of Theorem ��� directly applies in this case�� Osher ����� introduced
the so�called numerical E��uxes to guarantee the cell entropy inequality� In ����� we
prove the entropy inequality for general fully�discrete E�schemes	 the proof is based
on the key observation that the numerical viscosity � � quantied in terms of the
numerical viscosity coe�cient Q in �������� associated with any E��ux� is a convex
combination of the Godunov and Lax�Friedrichs viscosities� given in ������ and
������� respectively� Applications to the question of multidimensional convergence
can be found in ������������������������ E��uxes are restricted to rst�order accuracy�
since they are consistent with all Kru$zkov�s entropy pairs� A systematic study
of the cell entropy inequality for second�order resolution scheme can be found in
����� �for upwind schemes� and in ����� �for central schemes�� The above discussion
is restricted to scalar problems� Of course� general Godunov and LxF schemes
�m � �� d � ��� satisfy a cell entropy inequality because the Riemann solutions do�
�For the LxF scheme� we refer to Lax� ����� who proved the cell entropy inequity
independently of the Riemann solution�

��
 Entropy Production Bounds

Compensated compactness �m � �� d � ��
We deal with a family of approximate solutions� f��g� such that

�i� It is uniformly bounded� �� � L�� with a weak+ limit� �� � � 

�ii� The entropy production� for all convex entropies �� lies in a compact subset of
W��

loc �L��t� x���


��� � � 	 �t����� ! �xF ���� � W��
loc �L��t� x��� ������

The conclusion is that A���� � A���� and hence � is a weak solution in fact� there
is a strong convergence� ��  �� on any nona�ne interval of A���� For a complete
account on the theory of compensated compactness we refer to the innovative works
of Tartar ����� and Murat ������ In the present context� compensated compactness
argument is based on a clever application of the div�curl lemma� First scalar ap�
plications are due to Murat�Tartar� ������������ followed by extensions to certain
m � � systems by DiPerna ���� and Chen �����

The current framework has the advantage of dealing with L��type estimates
rather than the more intricate BV framework� How does one verify the W��

loc �L���
condition ������# we illustrate this point with canonical viscosity approximation

��



������ Multiplication by �� shows that its entropy production amounts to ����Q��x�x�
����Q���x��� By entropy convexity� ����Q � ��� and space�time integration yields

� An entropy production bound

p
�k��

�

�x
kL�

loc
�t
x� � Const� ������

Though this bound is too weak for strong compactness� it is the key estimate
behind the W��

loc �L���compactness condition ������� We continue with the specic
examples of streamline�di�usion in x��� and spectral viscosity methods in x����

The streamline di�usion 	nite�element method
The Streamline Di�usion �SD� nite element scheme� due to Hughes� Johnson�
Szepessy and their co�workers ����� ����� ����� was one of the rst methods whose con�
vergence was analyzed by compensated compactness arguments� �Of course� nite�
element methods t into L��type Hilbert�space arguments�� In the SD method�
formulated here in several space dimensions� one seeks a piecewise polynomial�
f��xg� which is uniquely determined by requiring for all piecewise polynomial test
functions ��x�

h�t��x !rx � A���x�� ��x ! j�xj � ���xt ! A����x���xx � i � �� ������

Here� �x denotes the spatial grid size �for simplicity we ignore time discretization��
The expression inside the framed box on the left represents a di�usion term along
the streamlines� %x � A����x�� Setting the test function� ��x � ��x� ������ yields
the desired entropy production bound

p
�xk�t��x !rx �A���x�kL�

loc
�t
x� � Const� ������

Thus� the spatial derivative in ������ is replaced here by a streamline�directional
gradient� This together with an L��bound imply W��

loc �L���compact entropy pro�
duction� ������� and convergence follows ���������������� We note in passing that the
extension of the SD method for systems of equations is carried out by projection
into entropy variables� ������ which in turn provide the correct interpretation of
������ as an entropy production bound�
The lectures of C� Johnson in this volume will present a comprehensive discussion
of the streamline di�usion method and its related extensions�

The spectral viscosity method
Since spectral projections are inherently oscillatory� they do not lend themselves
to a priori TVB bound� Spectral methods provide another example for a family
of approximate solutions whose convergence could be better dealt� therefore� by
compensated compactness arguments� Spurious Gibbs oscillations violate the strict
TVD condition in this case� Instead� an entropy production bound� analogous to

� Observe that the viscosity matrix is therefore required to be positive w�r�t� the
Hessian ����

��



������ is sought� Indeed� such bound could be secured by spectrally accurate hyper�
viscosity which is expressed in terms of the computed Fourier coe�cients� This
leads us to a discussion on the Spectral Viscosity �SV� method�

Let PN denote an appropriate spatial projection into the space of N �degree
polynomials�

PN��t� x� �
X
jkj�N

,�k�t��k�x� 

here f�kg stands for a given family of orthogonal polynomials� either trigonometric
or algebraic ones� e�g�� feikxg� fLk�x�g� fTk�x�g� etc� The corresponding N �degree
approximate solution� �N �t� x�� is governed by the spectral viscosity �SV� approxi�
mation

�t�N ! �xPNA��N� �
����s��

N�s�� �sx�Q � �sx�N�� ������

The left hand side of ������ is the standard spectral approximation of the conser�
vation law ������ The expression on the right

����s��

N�s�� �sx�Q � �sx�N� 	�
����s��

N�s��

X
jkj�N�

,Qk ,�k�t��
��s�
k �x�� ������

represents the so called spectral viscosity introduced in ������ It contains a minimal
amount of high�modes regularization which retains the underlying spectral accuracy
of the overall approximation� The case s � � corresponds to a truncated second�
order viscosity

�

N
�x�Q � �x�N� 	�

�

N

X
jkj�N�

,Qk ,�k�t����k�x��

It involves a viscous�free zone for the rst N� modes� � 	 � 	 �
�
� High modes

di�usion is tuned by the viscosity coe�cients ,Qk�
Larger s�s corresponds to truncated hyper�di�usion of order �s� This allows for

even a larger viscosity�free zone of size N� � with � 	 � 	 �s��
�s

�with possibly

s � sN �
p
N�� consult ������ The underlying hyper�viscosity approximation �for

say s � �� reads

�t�
� ! �xA���� ! ����x�

� � �� ������

We note that already the solution operator associated with ������ is not monotone�
hence L��contraction and the TVD condition fail in this case�

Instead� an L��type entropy production estimate analogous to ������

�p
N
k��N
�x
kL�

loc
�t
x� � Const�

together with an L��bound� carry out the convergence analysis by compensated
compactness arguments� ������ ������ Extensions to certain m � � systems can be
found in ������ We shall return to a detailed discussion on the SV method in our
lecture III�

��



��� Measure�valued solutions�m � �� d � ��

We turn our attention to the multidimensional scalar case� dealing with a fami�
lies of uniformly bounded approximate solutions� f��g� with weak+ limit� �� � ��
DiPerna�s result ���� states that if the entropy production of such a family tends
weakly to a negative measure� m � ��


��� � � 	 �t����� !rx � F ���� � m � �� ������

then the measure�valued solution � coincides with the entropy solution� and con�
vergence follows� This framework was used to prove the convergence of multidimen�
sional nite�di�erence schemes ����� streamline di�usion method ���������� spectral�
viscosity approximations ���� and nite�volume schemes ����� ���������� We focus our
attention on the latter�

Finite volume schemes �d � ��
We are concerned with nite�volume schemes based on possibly unstructured tri�
angulation grid fT�g �for simplicity we restrict attention to the d � � case�� The
spatial domain is covered by a triangulation� fT�g� and we compute approximate
averages over these triangles� &�n� � �

jT� j
R
T�

��tn� x�dx� governed by the nite volume

�FV� scheme

&�n��� � &�n� � �t

jT� j
X


'A����n� � �
n
���� ������

Here 'A�� stand for approximate �uxes across the interfaces of T� and its neighboring
triangles �identied by a secondary index ���

Typically� the approximate �uxes� 'A�� are derived on the basis of approximate
Riemann solvers across these interfaces� which yield a monotone scheme� That is�
the right hand side of ������ is a monotone function of its arguments ��n� � �

n
����

and hence the corresponding FV scheme is L��contractive� However� at this stage
one cannot proceed with the previous compactness arguments which apply to TVD
schemes over xed Cartesian grid	 since the grid is unstructured� the discrete solu�
tion operator is not translation invariant and L��contraction need not imply a TV
bound� Instead� an entropy dissipation estimate yieldsX

n

�t
X
�


j�n� � �n�� j��x�� � Const� � 	 � 	 �� ������

Observe that ������ is weaker than a TV bound �corresponding to � � ��� yet it
su�ces for convergence to a measure�valued solution� consult ����� �����
These questions will be addressed in B� Cockburn�s lectures� later in this volume�

�� Kinetic Approximations

By a kinetic formulation of ����� we mean a representation of the solution ��t� x�
as the average of a �microscopic� density function� f�t� x� v�� The formulation is a
kinetic one by its analogy with the classical kinetic models such as Boltzmann or
Vlasov models � see for instance ���������� In particular� we add a real�valued variable

��



called velocity� v� and the unknown becomes a �density�like� function� f�t� x� v��
which is governed by an appropriate transport equation�

A useful tool in this context is the velocity averaging lemma� dealing with the
regularity of the moments for such transport solutions�

Velocity averaging lemmas �m � �� d � ��
We deal with solutions to transport equations

a�v� � rxf�x� v� � �svg�x� v�� ������

The averaging lemmas� ����� ����� ����� state that in the generic non�degenerate
case� averaging over the velocity space� &f�x� 	�

R
v
f�x� v�dv� yields a gain of spatial

regularity� The prototype statement reads

Lemma ��� ����������������� Let f � Lp�x� v� be a solution of the transport equa�
tion ����� with g � Lq�x� v�� � � q 	 p � �� Assume the following non�degeneracy
condition holds

measvfvj ja�v� � 
j 	 �gj�j�� � Const � ��� � � ��� ��� ������

Then &f�x� 	�
R
v
f�x� v�dv belongs to Sobolev space W ��Lr�x���

&f�x� � W ��Lr�x��� � 	
�

��� � p�

q�
� ! �s ! ��p�

�
�

r
�

�

q
!

�� �

p
� ������

Variants of the averaging lemmas were used by DiPerna and Lions to construct
global weak �renormalized� solutions of Boltzmann� Vlasov�Maxwell and related
kinetic systems� ����� ���� in Bardos et� al�� ���� averaging lemmas were used to
construct solutions of the incompressible Navier�Stokes equations� We turn our
attention to their use in the context of nonlinear conservation laws and related
equations�

Nonlinear conservation laws
As a prototype example we begin with a Boltzmann�like � or more precisely� a BGK�
like model proposed in ������ Its �hydrodynamical limit� describes both the scalar
conservation law ����� together with its entropy inequalities� ������� It consists in
solving the transport equation

�f�

�t
! a�v� � rxf

� �
�

�

�
����v�� f�

�
� �t� x� v� � R

�
t � R

d
x � Rv � ������

f�jt�� � ����x��v�� �x� v� � R
d
x � Rv � ������

Here� ����t
x��v� denotes the "pseudo�Maxwellian��

����v� 	�

�
!� � 	 v 	 ��

�� �� 	 v 	 �
� jvj � ��

� ������

which is associated with the average of f��

���t� x� � &f� 	�

Z
R

f��t� x� v�dv� �t� x� � R�
t �Rd

x� ������

�	



Notice that the BGK�like model in ������������� is a semilinear� nonlocal� hyperbolic
�rst�order� equation which is rather simple to solve for xed � � �� This kinetic
model was introduced in ������ following the earlier works ��������� It follows that
that if �� � L��Rd� � L��Rd�� then �� converges in L����� T �� R

d� to the unique
entropy solution ������ ������� In fact� there is a convergence on the underlying
microscopic level� to a kinetic formulation of ������ ������� The latter is described by
a limiting �density�function�� f�t� x� v�� which is governed by the transport equation

�f

�t
! a�v� � rxf �

�m

�v
�t� x� v� � D��R�t � R

d
x � Rv � ������

subject to initial conditions

f � ����t
x��v�� ������

Here� m is a nonnegative bounded measure on R
�
t � R

d
x � Rv �

In what sense does the kinetic formulation ����������� �describe� the conserva�
tion law ����������# observe that by averaging of ������ one recovers the conservation
law ������ and taking its higher moments by integration against ���v�� one recovers
Kru$zkov entropy inequalities ������� for all convex entropies ��

Theorem �� Consider the BGK�like model ������������
fig There exists a nonnegative measure� m��t� x� v�� which is bounded indepen�

dently of �� such that the relaxation term on the right of ����� admits

�

�
���� � f�� �

�m�

�v
� m� � �� ������

fiig The solution f� of the kinetic model ����������� converges in
L����� T � � R

d
x � Rv � �
 T 	 �� to the solution of ������������ In addition� its

associated measure� m�� converges weakly to the measure� m� uniquely determined
by the kinetic formulation ����������� with f � ���

Remark ��� One may deduce from the above result and from ����� that m van�
ishes on open sets of the form f�x� v� t� � �x� t� � O v � Rg where O is an open set
on which � is locally Lipschitz� In other words� m is �supported by the shocks��

Proof� Several proof are available� each highlights the related aspects of this issue�
One approach makes use of the simple H�functions� *a la Boltzmann� constructed

in ������ Hc�f
�� 	� jf� � �cj�

Lemma ��� ����� Corollary ����� For any real c the following functions

Hc�f
�� 	� jf� � �cj

are kinetic entropy functions� i�e�� we haveZ
v

��t ! a�v� � rx�jf� � �cjdv � �� ������

��



Let us Remark that our kinetic entropy functions� Hc�f
��� are intimately related

to Kru$zkov entropy functions� ������ Indeed� in ����� we prove that as � � �� f�
approaches ��� With this in mind� the inequality ������ turns into Kru$zkov�s entropy
inequality ������� The entropy �or H��inequality� ������� then yields macroscopic
convergence by compensated compactness arguments in the one�dimensional case�
and by BV!entropy production bounds in the multidimensional case� Earlier works
on kinetic models related to ������ can be found in ��������������

An alternative proof� presented in ������ makes use of the averaging lemma�
���� In view of the results recalled above� we just have to verify that ������ holds�
�
�

�
��� � f�

�
� �m�

�v
� This fact can be shown in several ways�

One way is to observe that if g�v� is an L��R� function which satisfy �� as f�

does��

� � sign�v�g � ��

Z
R

g�v�dv � � ������

then there exists a nonnegative� bounded� continuous q such that

���v�� g�v� � q��v�� q � C�� ������

Indeed� set q�v� �
R v
������w��g�w��dw	 in the case � � � �� the other case be�

ing treated similarly�� we see that q is nondecreasing on ���� �� and nonincreasing
on ���!�� and we conclude since q���� � � and q�!�� � �� R

R
g dv � ��

The characterization in ������ of g�s satisfying ������� is in fact equivalent with
the following elementary lemma due to Brenier ���� which in turn yields still another
possible proof for the desired representation of the relaxation term in �������

Lemma ��� ���� Let � � R and let � be a C� convex function on R such that

�� is bounded� Then� ���v� is a minimizer of infG

�R
R
���v�g�v�dv

	
where the

in�mum is taken over all g � G 	�


g � L��R��

R
R
gdv � �� � � g sign�v� � �

�
�

In addition� ���v� is the unique minimizer if �� is strictly increasing on R�

Granted that ������ holds� i�e�� the relaxation term on the right of ������ belongs
to W��

v �Mt
x�� then the averaging lemma ��� applies with s � q � �� p � � �here
we identify� t � x�� � � 
�� a��v� � ��� It follows that if the conservation law is
linearly non�degenerate in the sense that ������ holds� that is� if 	� � ��� �� such
that

measfvj j� ! A��v� � 
j 	 �g � Const � ��� 
 � � ! j
j� � �� ������

then� f��g is compact � in fact f���t � �� ��g gains Sobolev regularity of order
s � �

���
�

We conclude this section with several remarks�
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Regularizing e�ect
We have shown above how the averaging lemma implies convergence under the
non�degeneracy condition ������� Moreover� in this case we quantied the Sobolev
W s�regularity of the approximate solutions� f��g� In fact� even more can be said
if the solution operator associated with f��g is translation invariant	 a bootstrap
argument presented in ����� yields the improved regularity of order s � �

���
�

���t � �� �� � W
�

��� �L��x��� ������

This shows that due to nonlinearity� ������� the corresponding solution operator�
Tt� has a regularization e�ect� as it maps L�c �W s�L�� with s� t � ��

In particular� this framework provides an alternative route to analyze the con�
vergence of general entropy stable multidimensional schemes� independent of the
underlying kinetic formulations� Here we refer to nite�di�erence� nite�volume�
streamline�di�usion and spectral approximations ���� which were studied in ����������
and �������������� for example� Indeed� the key feature in the convergence proof for
all of these methods is the W��

loc �L���compact entropy production�

�t����� !rx � F ���� � W��
loc �L��t� x��� 
��� � �� ������

Hence� if the underlying conservation law satises the non�linear degeneracy condi�
tion ������� then the corresponding family of approximate solutions� f���t � �� ��g
becomes compact� Moreover� if the entropy production is in fact a bounded mea�
sure� �� and here positive measures are included compared with the nonpositive
entropy production required from measure�valued solutions in �������� then there
is actually a gain of Sobolev regularity of order �

���
� and of order �

���
for the

translation invariant case� �The expected optimal order is ��� We shall outline this
general framework for studying the regularizing e�ect of approximate solutions to
multidimensional scalar equations in Lecture V�

Kinetic schemes
There is more than one way to convert microscopic kinetic formulations of non�
linear equations� into macroscopic algorithms for the approximate solution of such
equations� We mention the following three examples �in the context of conservation
laws��

� Brenier�s transport collapse method� ���� is a macroscopic projection method
which preceded the BGK�like model ������� see also ����� Here one alternates be�
tween transporting microscopic �pseudo�Maxwellians� which start with f�tn� �� v�
	� ���tn

��v�� and projecting their macroscopic averaging� ��tn��� �� � &f�tn��� �� v��
A convergence analysis of this method by the velocity averaging lemma was re�
cently worked out in ������

� Another approach is based on Chapman�Enskog asymptotic expansions� �����
We refer to ������ for an example of macroscopic approximation other than the
usual Navier�Stokes�like viscosity regularization � � the scalar version of this
regularized Chapman�Enskog expansion is studied in Lecture IV��

� Still another approach is o�ered by Godunov�type schemes� ������ based on
projections of the Maxwellians associated with the specic kinetic formulations�

��



These amount to specic Riemann solvers which were studied in ����� ������
������

We conclude by noting that kinetic formulations like those mentioned above in
the context of scalar conservation laws apply in more general situations� For exten�
sions consult ����� for degenerate parabolic equations� ����������� for the system of
� � � isentropic equations� ���� for the system of chromatographic equations� � � � �
We shall say more on these issues in Lecture V�
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� Non�oscillatory central schemes

Abstract� We discuss a new class of high�resolution approximations for hyperbolic
systems of conservation laws� which are based on central di�erencing� Its two main
ingredients include	

��� A non�oscillatory reconstruction of pointvalues from their given cell aver�
ages and

��� A central di�erencing based on staggered evolution of the reconstructed
averages�

Many of the modern high�resolution schemes for such systems� are based on
Godunov�type upwind di�erencing their intricate and time consuming part involves
the eld�by�eld characteristic decomposition� which is required in order to identify
the �direction of the wind�� Instead� our proposed central �staggered� stencils enjoy
the main advantage is simplicity	 no Riemann problems are solved� and hence eld�
by�eld decompositions are avoided� This could be viewed as the high�order sequel
to the celebrated Lax�Friedrichs �staggered� scheme� Typically� staggering su�ers
from excessive numerical dissipation� Here� excessive dissipation is compensated by
using modern� high�resolution� non�oscillatory reconstructions�

We highlight several features of this new class of central schemes�
Scalar equations� For both the second� and third�order schemes we prove vari�
ation bounds �� which in turn yield convergence with precise error estimates�� as
well as entropy and multidimensional L��stability estimates�
Systems of equations� Extension to systems is carried out by componentwise ap�
plication of the scalar framework� It is in this context that our central schemes o�er
a remarkable advantage over the corresponding upwind framework�
Multidimensional problems� Since we bypass the need for �approximate� Riemann
solvers� multidimensional problems are solved without dimensional splitting� In fact�
the proposed class of central schemes is utilized for a variety of nonlinear transport
equations�

A variety of numerical experiments conrm the high�resolution content of the
proposed central schemes� They include second� and third�order approximations for
one� and two�dimensional Euler� MHD� as well as other compressible and incom�
pressible equations� These numerical experiments demonstrate that the proposed
central schemes o�er simple� robust� Riemann�solver�free approximations� while at
the same time� they retain the high�resolution content of the more expensive upwind
schemes�

��� Introduction

In recent years� central schemes for approximating solutions of hyperbolic con�
servation laws� received a considerable amount of renewed attention� A family
of high�resolution� non�oscillatory� central schemes� was developed to handle such
problems� Compared with the �classical� upwind schemes� these central schemes
were shown to be both simple and stable for a large variety of problems rang�
ing from one�dimensional scalar problems to multi�dimensional systems of con�
servation laws� They were successfully implemented for a variety of other related
problems� such as� e�g�� the incompressible Euler equations ��������������� ����� the
magneto�hydrodynamics equations ����� viscoelastic �ows����� hyperbolic systems

��



with relaxation source terms ������������� non�linear optics ��������� and slow moving
shocks �����

The family of high�order central schemes we deal with� can be viewed as a direct
extension to the rst�order� Lax�Friedrichs �LxF� scheme ���� which on one hand
is robust and stable� but on the other hand su�ers from excessive dissipation� To
address this problematic property of the LxF scheme� a Godunov�like second�order
central scheme was developed by Nessyahu and Tadmor �NT� in ���� �see also ������
It was extended to higher�order of accuracy as well as for more space dimensions
�consult ���� ����� ���� ��� and ����� for the two�dimensional case� and ����� ����� ����
and ���� for the third�order schemes��

The NT scheme is based on reconstructing� in each time step� a piecewise�
polynomial interpolant from the cell�averages computed in the previous time step�
This interpolant is then �exactly� evolved in time� and nally� it is projected on its
staggered averages� resulting with the staggered cell�averages at the next time�step�
The one� and two�dimensional second�order schemes� are based on a piecewise�linear
MUSCL�type reconstruction� whereas the third�order schemes are based on the non�
oscillatory piecewise�parabolic reconstruction ���������� Higher orders are treated in
�����

Like upwind schemes� the reconstructed piecewise�polynomials used by the cen�
tral schemes� also make use of non�linear limiters which guarantee the overall non�
oscillatory nature of the approximate solution� But unlike the upwind schemes�
central schemes avoid the intricate and time consuming Riemann solvers this ad�
vantage is particularly important in the multi�dimensional setup� where no such
Riemann solvers exist�

��� A Short guide to Godunov�Type schemes

We want to solve the hyperbolic system of conservation laws

ut ! f�u�x � � ������

by Godunov�type schemes� To this end we proceed in two steps� First� we introduce a
small spatial scale� �x� and we consider the corresponding �Steklov� sliding average
of u��� t��

&u�x� t� 	�
�

jIxj

Z
Ix

u�
� t�d
� Ix �
n


��� j
 � xj � �x

�

o
�

The sliding average of ������ then yields

&ut�x� t� !
�

�x

h
f�u�x !

�x

�
� t��� f�u�x� �x

�
� t��
i

� �� ������

Next� we introduce a small time�step� �t� and integrate over the slab t � � � t!�t�

&u�x� t ! �t� � &u�x� t� ������

� �

�x

Z t��t

	�t

f�u�x !
�x

�
� ���d�

�
Z t��t

	�t

f�u�x� �x

�
� � ��d�

�
�

��



We end up with an equivalent reformulation of the conservation law ������	 it ex�
presses the precise relation between the sliding averages� &u��� t�� and their underlying
pointvalues� u��� t�� We shall use this reformulation� ������� as the starting point for
the construction of Godunov�type schemes�

We construct an approximate solution� w��� tn�� at the discrete time�levels� tn �
n�t� Here� w�x� tn� is a piecewise polynomial written in the form

w�x� tn� �
X

pj�x��j�x�� �j�x� 	� �Ij �

where pj�x� are algebraic polynomials supported at the discrete cells� Ij � Ixj �
centered around the midpoints� xj 	� j�x� An exact evolution of w��� tn� based on
������� reads

&w�x� tn��� � &w�x� tn� ������

� �

�x

�Z tn��

tn

f�w�x !
�x

�
� � ��d�

�
Z tn��

tn

f�w�x� �x

�
� � ��d�

�
�

To construct a Godunov�type scheme� we realize ������ � or at least an accu�
rate approximation of it� at discrete gridpoints� Here� we distinguish between the
main methods� according to their way of sampling ������	 these two main sampling
methods correspond to upwind schemes and central schemes�

Upwind schemes
Let &wn

j abbreviates the cell averages� &wn
j 	� �

�x

R
Ij
w�
� tn�d
� By sampling ������

at the mid�cells� x � xj � we obtain an evolution scheme for these averages� which
reads

&wn��
j � &wn

j � �

�x

�Z tn��

	�tn

f�w�xj� �
�
� � ��d� �

Z tn��

	�tn

f�w�xj� �
�
� ���d�

�
� ������

Here� it remains to recover the pointvalues� fw�xj� �
�
� � �gj � tn � � � tn��� in terms

of their known cell averages� f &wn
j gj � and to this end we proceed in two steps	

� First� the reconstruction � we recover the pointwise values of w��� �� at � � tn�
by a reconstruction of a piecewise polynomial approximation

w�x� tn� �
X
j

pj�x��j�x�� &pj�xj� � &wn
j � ������

� Second� the evolution � w�xj� �
�
� � � tn� are determined as the solutions of

the generalized Riemann problems

wt ! f�w�x � �� t � tn w�x� tn� �

�
pj�x� x 	 xj� �

�
�

pj���x� x � xj� �
�
�

������

��



The solution of ������ is composed of a family of nonlinear waves � left�going and
right�going waves� An exact Riemann solver� or at least an approximate one is used
to distribute these nonlinear waves between the two neighboring cells� Ij and Ij���
It is this distribution of waves according to their direction which is responsible for
upwind di
erencing� consult Figure ���� We brie�y recall few canonical examples
for this category of upwind Godunov�type schemes�

t+    t∆

x

w

j-1f jf

w      (t)

w  (t)

w      (t)

j-1

j+1

j

jw  (t +     t )∆

Fig
 �
�� Upwind di�erencing by Godunov�type scheme�

The original Godunov scheme is based on piecewise�constant reconstruction�
w�x� tn� � � &wn

j �j � followed by an exact Riemann solver� This results in a rst�order
accurate upwind method ����� which is the forerunner for all other Godunov�type
schemes� A second�order extension was introduced by van Leer ����	 his MUSCL
scheme reconstructs a piecewise linear approximation� w�x� tn� � �pj�x��j�x��

with linear pieces of the form pj�x� � &wn
j ! w�j

�
x�xj
�x

�
so that &pj�xj� � &wn

j � Here

the w�j �s are possibly limited slopes which are reconstructed from the known cell�

averages� w�j � f�wn
j ��g � fw�� &wn

k �j��k�j��g� �Throughout this lecture we use primes�
w�j � w

��
j � � � � � to denote discrete derivatives� which approximate the corresponding

di�erential ones�� A whole library of limiters is available in this context� so that the
co�monotonicity of w�x� tn� with � &wj�j is guaranteed� e�g�� ����� The Piecewise�
Parabolic Method �PPM� of Colella�Woodward ��� and respectively� ENO schemes
of Harten et�al� ����� o�er� respectively� third� and higher�order Godunov�type up�
wind schemes� �A detailed account of ENO schemes can be found in lectures of C�W�
Shu in this volume�� Finally� we should not give the impression that limiters are
used exclusively in conjunction with Godunov�type schemes� The positive schemes
of Liu and Lax� ����� o�er simple and fast upwind schemes for multidimensional
systems� based on an alternative positivity principle�

Central schemes

��



As before� we seek a piecewise�polynomial� w�x� tn� � �pj�x��j�x�� which serves
as an approximate solution to the exact evolution of sliding averages in �������

&w�x� tn��� � &w�x� tn� � �

�x

�Z tn��

tn

f�w�x !
�x

�
� � ��d� ������

�
Z tn��

tn

f�w�x� �x

�
� ���d�

�
�

Note that the polynomial pieces of w�x� tn� are supported in the cells� Ij �
n



���
j
 � xj j � �x

�

�
� with interfacing breakpoints at the half�integers gridpoints� xj� �

�
��

j ! �
�

�
�x�

We recall that upwind schemes ������ were based on sampling ������ in the
midcells� x � xj � In contrast� central schemes are based on sampling ������ at the
interfacing breakpoints� x � xj� �

�
� which yields

&wn��

j� �
�

� &wn
j� �

�
� �

�x

�Z tn��

	�tn

f�w�xj��� ���d� �
Z tn��

	�tn

f�w�xj � � ��d�

�
� ������

We want to utilize ������ in terms of the known cell averages at time level � �
tn� f &wn

j gj � The remaining task is therefore to recover the pointvalues fw��� ��j tn �
� � tn��g� and in particular� the staggered averages� f &wn

j� �
�
g� As before� this task

is accomplished in two main steps	

� First� we use the given cell averages f &wn
j gj � to reconstruct the pointvalues of

w��� � � tn� as piecewise polynomial approximation

w�x� tn� �
X
j

pj�x��j�x�� &pj�xj� � &wn
j � ������

In particular� the staggered averages on the right of ������ are given by

&wn
j� �

�
�

�

�x

��Z x
j��

�

xj

pj�x�dx!

Z xj��

x
j� �

�

pj���x�dx

�� � ������

The resulting central scheme ������ then reads

&wn��

j� �
�

�
�

�x

��Z x
j��

�

xj

pj�x�dx !

Z xj��

x
j��

�

pj���x�dx

��! ������

� �

�x

�Z tn��

	�tn

f�w�xj��� ���d� �
Z tn��

	�tn

f�w�xj � � ��d�

�
�

� Second� we follow the evolution of the pointvalues along the mid�cells� x �
xj � fw�xj � � � tn�gj � which are governed by

wt ! f�w�x � �� � � tn w�x� tn� � pj�x� x � Ij � ������
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Let fak�u�gk denote the eigenvalues of the Jacobian A�u� 	� �f
�u

� By hyperbolic�
ity� information regarding the interfacing discontinuities at
�xj� �

�
� tn� propagates no faster than max

k
jak�u�j� Hence� the mid�cells val�

ues governed by ������� fw�xj � � � tn�gj � remain free of discontinuities� at
least for su�ciently small time step dictated by the CFL condition �t �
�
�
�x � max

k
jak�u�j� Consequently� since the numerical �uxes on the right of

�������
R tn��

	�tn
f�w�xj � ���d� � involve only smooth integrands� they can be com�

puted within any degree of desired accuracy by an appropriate quadrature rule�
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Fig
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�� Central di�erencing by Godunov�type scheme�

It is the staggered averaging over the fan of left�going and right�going waves
centered at the half�integered interfaces� �xj� �

�
� tn�� which characterizes the cen�

tral di�erencing� consult Figure ���� A main feature of these central schemes � in
contrast to upwind ones� is the computation of smooth numerical �uxes along the
mid�cells� �x � xj � � � tn�� which avoids the costly �approximate� Riemann solvers�
A couple of examples of central Godunov�type schemes is in order�

The rst�order Lax�Friedrichs �LxF� approximation is the forerunner for such
central schemes � it is based on piecewise constant reconstruction� w�x� tn� �
�pj�x��j�x� with pj�x� � &wn

j � The resulting central scheme� ������� then reads
�with the usual xed mesh ratio  	� �t

�x
�

&wn��

j� �
�

�
�

�
� &wj ! &wj���� 

h
f� &wj���� f� &wj�

i
� ������

Our main focus in the rest of this chapter is on non�oscillatory higher�order exten�
sions of the LxF schemes�

��� Central schemes in one�space dimension

��



The second�order Nessyahu�Tadmor scheme
In this section we overview the construction of high�resolution central schemes in
one�space dimension� We begin with the reconstruction of the second�order� non�
oscillatory Nessyahu and Tadmor �NT� scheme� ����� To approximate solutions of
������� we introduce a piecewise�linear approximate solution at the discrete time
levels� tn � n�t� based on linear functions pj�x� t

n� which are supported at the
cells Ij �see Figure �����

w�x� t�jt�tn �
X
j

pj�x� t
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h
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�� The second�order reconstruction

Second�order of accuracy is guaranteed if the discrete slopes approximate the
corresponding derivatives� w�j � �x � �xw�xj � t

n� ! O��x��� Such a non�oscillatory
approximation of the derivatives is possible� e�g�� by using built�in non�linear lim�
iters of the form

w�j � MMf�� &wn
j�� � &wn

j ��
�

�
� &wn

j�� � &wn
j���� �� &wn

j � &wn
j���g� ������

Here and below� � � ��� �� is a non�oscillatory limiter and MM denotes the Min�
Mod function

MMfx�� x�� ���g �

�
minifxig if xi � �� 
i
maxifxig if xi 	 �� 
i
� otherwise�

An exact evolution of w� based on integration of the conservation law over the
staggered cell� Ij� �

�
� then reads� ������

&wn��

j� �
�

�
�

�x

Z
I
j� �

�

w�x� tn�dx� �

�x

Z tn��

	�tn

�f�w�xj��� ���� f�w�xj � ���� d��
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The rst integral is the staggered cell�average at time tn� &wn
j� �

�
� which can be

computed directly from the above reconstruction�

&wn
j� �

�
	�

�

�x

Z xn��

xj

w�x� tn�dx �
�

�
� &wn

j ! &wn
j��� !

�

�
�w�j � w�j���� ������

The time integrals of the �ux are computed by the second�order accurate mid�point
quadrature rule Z tn��

	�tn

f�w�xj � ���d� � �t � f�w�xj � t
n� �

� ���

Here� the Taylor expansion is being used to predict the required mid�values of w

w�xj � t
n� �

� � � w�xj � t� !
�t

�
wt�xj� t

n�

� &wn
j � �t

�
A� &wn

j ��pj�xj � t
n��x � &wn

j � 

�
An
j w

�
j �

In summary� we end up with the central scheme� ����� which consists of a rst�
order predictor step�

w
n� �

�
j � &wn

j � 

�
An
j w

�
j � An

j 	� A� &wn
j �� ������

followed by the second�order corrector step� �������

&wn��

j� �
�

�
�

�
� &wn

j ! &wn
j��� !

�

�
�w�j �w�j���� 

h
f�w

n� �
�

j�� �� f�w
n� �

�
j �

i
� ������

The scalar non�oscillatory properties of ������������� were proved in ����� �����
including the TVD property� cell entropy inequality� L�

loc� error estimates� etc�
Moreover� the numerical experiments� reported in ����� ����� ���� ���� ����� ����� �����
����� with one�dimensional systems of conservation laws� show that such second�
order central schemes enjoy the same high�resolution as the corresponding second�
order upwind schemes do� Thus� the excessive smearing typical to the rst�order
LxF central scheme is compensated here by the second�order accurate MUSCL
reconstruction�

In gure ��� we compare� side by side� the upwind ULT scheme of Harten� �����
with our central scheme �������������� The comparable high�resolution of this so
called Lax�s Riemann problem is evident�

At the same time� the central scheme ������������� has the advantage over the
corresponding upwind schemes� in that no �approximate� Riemann solvers� as in
������� are required� Hence� these Riemann�free central schemes provide an e��
cient high�resolution alternative in the one�dimensional case� and a particularly ad�
vantageous framework for multidimensional computations� e�g�� ���� ���� ����� This
advantage in the multidimensional case will be explored in the next section� Also�
staggered central di�erencing� along the lines of the Riemann�free Nessyahu�Tadmor
scheme �������������� admits simple e�cient extensions in the presence of general
source terms� ���� and in particular� sti� source terms� ���� Indeed� it is a key ingre�
dient behind the relaxation schemes studied in �����

It should be noted� however� that the component�wise version of these central
schemes might result in deterioration of resolution at the computed extrema� The

�	



second�order computation presented in gure ��� below demonstrates this point�
�this will be corrected by higher order central methods�� Of course� this � so called
extrema clipping� is typical to high�resolution upwind schemes as well but it is
more pronounced with our central schemes due to the built�in extrema�switching
to the dissipative LxF scheme� Indeed� once an extrema cell� Ij � is detected �by
the limiter�� it sets a zero slope� w�j � �� in which case the second�order scheme
������������� is reduced back to the rst�order LxF� �������

��
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The third�order central scheme
Following the framework outlined in x���� the upgrade to third�order central scheme
consists of two main ingredients	

�i� A third�order accurate� piecewise�quadratic polynomial reconstruction which
enjoys desirable non�oscillatory properties 

�ii� An appropriate quadrature rule to approximate the numerical �uxes along
cells� interfaces�

Following ����� we proceed as follows� The piecewise�parabolic reconstruction
takes the form

pj�x� � wn
j ! w�j

�
x� xj
�x

�
!

�

�
w��j
�
x� xj
�x

��
� ������

Here� w��j are the �pointvalues of� the reconstructed second derivatives

w��j 	� �j���� &wn
j  ������

w�j are the �pointvalues of� the reconstructed slopes�

w�j 	� �j�� &wn
j  ������

and wn
j are the reconstructed pointvalues

wn
j 	� &wn

j �
w��j
��

� ������

Observe that� starting with third� �and higher�� order accurate methods� pointwise
values cannot be interchanged with cell averages� wn

j �� &wn
j �

Here� �j are appropriate nonlinear limiters which guarantee the non�oscillatory
behavior of the third�order reconstruction its precise form can be found in �����
����� They guarantee that the reconstruction ������ is non�oscillatory in the sense
that N�w��� tn�� � the number of extrema of w�x� tn�� does not exceed that of its
piecewise�constant projection� N�� &wn

j �j�����

N�w��� tn�� � N�� &wn
j �j����� �������

Next we turn to the evolution of the piecewise�parabolic reconstructed solution�
To this end we need to evaluate the staggered averages� f &wn

j� �
�
g� and to approximate

the interface �uxes�
nR tn��
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��
specied in �������������� one

evaluates the staggered averages of the third�order reconstruction w�x� tn� �
�pj�x� �j�x�
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Remarkably� we obtain here the same formula for the staggered averages as in the
second�order cases� consult ������ the only di�erence is the use of the new limited
slopes in ������� w�j � �j�� &wn

j �

��



Next� we approximate the �exact� numerical �uxes by Simpson�s quadrature
rule� which is �more than� su�cient for retaining the overall third�order accuracy�
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This in turn� requires the three approximate pointvalues on the right� wn��
j �

w�xj � t
n��� for � � �� �

�
� �� Following our approach in the second�order case� �����

we use Taylor expansion to predict

wn
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In summary of the scalar setup� we end up with a two step scheme where�
starting with the reconstructed pointvalues

wn
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we predict the pointvalues wn��
j by� e�g� Taylor expansions�
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this is followed by the corrector step
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In gure ��� we revisit the so called Woodward�Colella problem� ����� where we
compare the second vs� the third�order results� The improvement in resolving the
density eld is evident�

We conclude this section with several remarks�

Remarks�

�� Stability�
We brie�y mention the stability results for the scalar central schemes� In the
second order case� the NT scheme was shown to be both TVD and entropy
stable in the sense of satisfying a cell entropy inequality � consult ����� The
third�order scalar central scheme is stable in the sense of satisfying the NED
property� �������� namely

��



Theorem ��� ����� Consider the central scheme ��������������
������� based on the third�order accurate quadratic reconstruction� ������
������ Then it satis�es the so�called Number of Extrema Diminishing NED�
property� in the sense that

N

�X
�

&wn��

v� �
�

��� �
�

�x�

�
� N

�X
�

&wn
����x�

�
� �������

�� Source terms� radial coordinates� ���

Extensions of the central framework which deal with both� sti� and non�sti�
source terms can be found in ���������� ���� ���� In particular� Kupferman in
��������� developed the central framework within the radial coordinates which
require to handle both � variable coe�cients ! source terms�

�� Higher order central schemes�

We refer to ����� where a high�order ENO reconstruction is realized by a stag�
gered cell averaging� Here� intricate Riemann solvers are replaced by high order
quadrature rules� and for this purpose� one can e�ectively use the RK method
�rather than the Taylor expansion outlined above�	

�� Taylor vs� Runge�Kutta�

The evaluations of Taylor expansions could be substituted by the more eco�
nomical Runge�Kutta integrations the simplicity becomes more pronounced
with systems� A particular useful approach in this context was proposed in
����� using the natural continuous extensions of RK schemes�

�� Systems�

One of the main advantages of our central�staggered framework over that of the
upwind schemes� is that expensive and time�consuming characteristic decompo�
sitions can be avoided� Specically� all the non�oscillatory computations can be
carried out with diagonal limiters� based on a
component�wise extension of the scalar limiters outlined above�

��
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��
 Central schemes in two space dimensions

Following the one dimensional setup� one can derive a non�oscillatory� two�dimensio�
nal central scheme� Here we sketch the construction of the second�order two�dimensional
scheme following ���� �see also ��������� For the two�dimensional third�order accurate
scheme� we refer to �����

We consider the two�dimensional hyperbolic system of conservation laws

ut ! f�u�x ! g�u�y � �� �������

To approximate a solution to �������� we start with a two�dimensional linear recon�
struction

w�x� y� tn� �
X
j
k

pj
k�x� y��j
k�x� y�� �������

pj
k�x� y� � &wn
j
k ! w�j
k

�
x� xj
�x

�
! w�

j
k

�
y � yk
�y

�
�

Here� the discrete slopes in the x and in the y direction approximate the correspond�
ing derivatives� w�j
k � �x � wx�xj � yk� t

n� ! O��x��� w�

j
k � �y � wy�xj � yk� t
n� !

O��y��� and �j
k�x� y� is the characteristic function of the cell Cj
k 	�
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i j
 � xj j � �x
�
� j� � ykj � �y

�

�
� Ij � Jk� Of course� it is essential to reconstruct

the discrete slopes� w� and w�� with built in limiters� which guarantee the non�
oscillatory character of the reconstruction the family of min�mod limiters is a
prototype example
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An exact evolution of this reconstruction� which is based on integration of the
conservation law over the staggered volume yields
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The exact averages at tn � consult the �oor plan in Figure ��� yields
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�� Floor plan of the staggered grid�

So far everything is exact� We now turn to approximate the four �uxes on
the right of �������� starting with the one along the East face� consult gure ����
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f�w�xj��� y� ���dyd� � We use the midpoint quadrature rule for second�

order approximation of the temporal integral� �
R
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f�w�xj��� y� t
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� ��dy and�

for reasons to be claried below� we use the second�order rectangular quadrature
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rule for the spatial integration across the y�axis� yielding
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In a similar manner we approximate the remaining �uxes�
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Fig
 �
�� The central� staggered stencil�

These approximate �uxes make use of the midpoint values�

w
n� �

�
jk � w�xj � yk� t

n� �
� �� and it is here that we take advantage of utilizing these mid�

values for the spatial integration by the rectangular rule� Namely� since these mid�
values are secured at the smooth center of their cells� Cjk� bounded away from the

jump discontinuities along the edges� we may use Taylor expansion� w�xj� yk� t
n� �

� � �
&wn
jk ! �t

�
wt�xj� yk� t

n� ! O��t��� Finally� we use the conservation law ������� to
express the time derivative� wt� in terms of the spatial derivatives� f�w�� and g�w���
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Here� f�w��jk � �x � f�w�xj � yk� t
n��x and g�w��

jk � �y � g�w�xj� yk� t
n��y� are one�

dimensional discrete slopes in the x� and y�directions� of the type reconstructed in
����������������� for example� multiplication by the corresponding Jacobians A and
B yields

f�w��jk � A� &wn
jk�w�jk� g�w��

jk � B� &wn
jk�w�

jk�

Equipped with the midvalues �������� we can now evaluate the approximate �uxes�
e�g�� �������� Inserting these values� together with the staggered average computed
in �������� into �������� we conclude with new staggered averages at t � tn��� given
by
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In summary� we end up with a simple two�step predictor�corrector scheme which
could be conveniently expressed in terms on the one�dimensional staggered averag�
ing notations
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followed by the corrector step
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In gures ��� taken from ����� we present the two�dimensional computation
of a double�Mach re�ection problem in gure ��� we quote from ���� the two�
dimensional computation of MHD solution of Kelvin�Helmholtz instability due to
shear �ow� The computations are based on our second�order central scheme� It is
remarkable that such a simple �two�lines� algorithm� with no characteristic decom�
positions and no dimensional splitting� approximates the rather complicated double
Mach re�ection problem with such high resolution� Couple of remarks are in order�

� The two�dimensional computation is more sensitive to the type of limiter than
in the one�dimensional framework ����� In the context of the double Mach
re�ection problem� the MM� �consult ������ with � � �� seems to yield the
sharper results�

�	
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��Double Mach re�ection problem computed with the central scheme using
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Fig
 �
�� Kelvin�Helmholtz instability due to shear �ow� Transverse con�guration

B perpendicular to v�� Pressure contours at t � ��	

� No e�ort was made to optimize the boundary treatment� The staggered stencils
require a di�erent treatment for even�odd cells intersecting with the bound�
aries� A more careful treatment following ���� is presented in x���� The lack of
boundary resolution could be observed at the bottom of the two Mach stems�

We conclude this section with brief remarks on further results related to central
schemes�

Remarks�

�� Simplicity�

Again� we would like to highlight the simplicity of the central schemes� which
is particularly evident in the multidimensional setup	 no characteristic infor�
mation is required � in fact� even the exact Jacobians of the �uxes are not
required also� since no �approximate� Riemann solvers are involved� the cen�
tral schemes require no dimensional splitting as an example we refer to the
approximation of the incompressible equations by central schemes� x��� the
results in ��� provide another example of a weakly hyperbolic multidimensional
system which could be e�ciently solved in term of central schemes� by avoiding
dimensional splitting�

�� Non�staggering� We refer to ���� for a non�staggered version of the central
schemes�

�� Stability�

The following maximum principle holds for the nonoscillatory scalar central
schemes	

Theorem ��� ���� Consider the two�dimensional scalar scheme �������������
with minmod slopes� w� and w�� in ���������������� Then for any � 	 � there
exists a su�ciently small CFL number� C�  � e�g� C� � �

p
� � ���� � �����

such that if the CFL condition is ful�lled�

max� �max
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u
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then the following local maximum principle holds
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�� Third�order accuracy� Extensions to third�order accuracy in two space dimen�
sions can be found in �����

Boundary conditions
Following ����� we demonstrate our boundary treatment in the case of the left�
boundary �see Figure ������

0,k+1

0,k+1/2

0,k

1/2,k+1

1/2,k

x

y

Fig
 �
�	� Two dimensions � left boundary

We distinguish between in�ow �f ��wn
���
k� � ��� and out�ow �f ��wn

���
k� 	 ���
boundary cells�

In in�ow boundary cells� we reconstruct a constant interpolant from the pre�
scribed point�values at these boundaries�

p���
k�x� y� tn� � wn
�
k� w����
k � �� �������

This reconstruction is then used to build the approximate solution at time tn�� in
the interior cells� At the next�time step� tn��� the cell�averages at these boundary

��



cells are dened according to the prescribed point�values as
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We now turn to the out�ow boundary cells� Here� we extrapolate the data from
the interior of the domain� up to the boundary� First� we determine the discrete
slope in the x�direction� w����
k� This slope is then used to extrapolate the cell�
average up to the boundary�
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The discrete slope in the y�direction� w�

�
k� is computed in that boundary cell in an
analogous way to the interior computation� In summary� the staggered average at
time tn�� is given by

&wn��
���
k���� �

&wn
���
k ! &wn

���
k��

�
! �������

!
�

�
��w����
k �w����
k�� ! w�

���
k � w�

���
k���

�

�
�f�wn

���
k��� ! f�wn
���
k�� f�wn

�
k���� f�wn
�
k��

���g�wn
���
k��� ! g�wn

�
k���� g�wn
���
k�� g�wn

�
k�����

This concludes the boundary treatment of the left boundary� Similar expressions
hold for the other three boundaries�

We now turn to the corners and as a prototype� consider the upper�left corner
�see Figure ������ In the corner we repeat the previous boundary treatment with
one simple modication� The main di�erence regarding the boundary scheme in the
corner is based on the number of di�erent possible in�ow)out�ow congurations in
that corner�
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Computationally� the most complicated case is when the �ow in that upper�left
corner is out�ow in both directions� In this case� the staggered average at time tn���
&wn��
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N����� is computed according to���w����
N���� � � � � Limited slopes
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The cell�average in the north�west edge of Figure ���� in time tn��� is given in this
out�ow�out�ow case by the corrector step
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When one of the boundaries is in�ow� we have w����
N���� � w�

���
N���� � �� and

&wn��
���
N���� � wn��

�
N �� the prescribed pointvalues at the corner��
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As an example� we we approximate a solution to the two�dimensional Burgers
equation

ut ! uux ! uuy � �� �������

subject to the initial conditions�

u��x� y� �

���������������

��� �� � x 	 ���� � y 	 �

� � � x � ���� � y 	 �

�� � � x � �� � � y � �

���� �� � x 	 �� � � y � ��

and augmented with boundary conditions at the in�ow boundaries which are equal
to the initial values at these same boundaries� Figures ���� show the evolution of
the solution in time for mesh sizes �� � �� and �� � ��� Again� we note that there
are no spurious oscillations at the boundaries� oscillations that are inherent with a
naive treatment of in�ow boundaries�

��� Incompressible Euler equations

The vorticity formulation
We are concerned with the approximate solution of the �D Euler �� and respectively
� NS� equations� expressed in terms of the vorticity� � 	� r� u�

�t ! �u��x ! �v��y � � � !����� �������

Here� u � �u� v�� is the two�component divergence�free velocity eld�

ux ! vy � �� �������

Equation ������� can be viewed as a nonlinear �viscous� conservation law�

�t ! f���x ! g���y � � � !����� �������

with a global �ux� �f� g� 	� �u�� v��� At the same time� the incompressibility �������
enables us to rewrite ������� in the equivalent convective form

�t ! u�x ! v�y � �� �������

Equation ������� guarantees that the vorticity� �� propagates with nite speed� at
least for uniformly bounded velocity eld� u � L�� This duality between the conser�
vative and convective forms of the equations plays an essential role in our discussion�

To approximate ������� by a second�order central scheme �following �������� we
introduce a piecewise�linear polynomial MUSCL approximate solution� ���� �� t�� at
the discrete time levels� tn � n�t�

��x� y� tn� �
X
j
k

n
&�nj
k ! ��j
k

�
x� xj
�x

�
! ��

j
k

�
y � yk
�y

��
�Cj�k � �������

��



with pieces supported in the cells� Cj
k 	�



�
� ��
��j
 � xj j � �x

�
� j� � ykj � �y

�

�
�

As before� we use the exact staggered averages at tn� followed by the midpoint
rule to approximate the corresponding �ux� For example� the averaged �ux� f � u�
is approximated by Analogous expressions hold for the remaining �uxes� Note that
�nite speed of propagation �of � � which is due to the discrete incompressibility
relation ������� below�� guarantees that these values are �secured� inside a region of

local smoothness of the �ow� The missing midvalues� �
n� �

�
j
k � are predicted using a

rst�order Taylor expansion �where  	� �t
�x

and � 	� �t
�y

� are the usual xed
mesh�ratios��

�
n� �

�
j
k � &�nj
k � 

�
f �j
k � �

�
g�

j
k � !�t�r�&�nj
k�� �������

Equipped with these midvalues� we are now able to use the approximate �uxes
which yield a second�order corrector step outlined in ������� below� Finally� we
have to recover the velocity eld from the computed values of vorticity� We end up
with the following algorithm�

��



�� Reconstruct
�a� An exact discrete divergence�free reconstruction of the velocity �eld� We dene

the discrete vorticity at the mid�cells as the average of the four corners of
each cell� i�e�

�j� �
�

k� �

�
	�

�

�
��j��
k�� ! �j
k�� ! �j
k ! �j��
k�� �������

We then use a streamfunction� �� such that �� � ��� which is obtained
in the min�cells� e�g�� by solving the ve�points Laplacian� ��j� �

�

k� �

�
�

��j� �
�

k� �

�
� Then� its gradient� r� recovers the velocity eld

uj
k � �xry�� vj
k � ��yrx�� �������

Here� �x and �y denote averaging in the x�direction and in the y�direction�
respectively� such that� e�g��

uj
k �
�

�

�
�j� �

�

k� �

�
� �j� �

�

k� �

�
! �j� �

�

k� �

�
� �j� �

�

k� �

�

�
�

Observe that with this integer indexed velocity eld� we retain a discrete
incompressibility relation� centered around �j ! �

�
� k ! �

�
��

	 uj��

 � uj

 �k� �
�

�x
!

	 v

k�� � v

k �j� �
�

�y
� �� �������

which is essential for the maximum principle in ������
�� Predict

�a� Prepare the pointvalues of the divergence�free velocity �eld � u��� �� tn�� from
the reconstructed vorticity pointvalues� wn

j
k� To this end� use the Biot�
Savart solver ������� 

�b� Predict the midvalues of the vorticity� �
n� �

�
j
k �

�
n� �

�
j
k � &�nj
k � 

�
unj
k�

�
j
k � �

�
vnj
k�

�

j
k� �������

Note	 Observe that here we use the predictor step ������� in its convective
formulation �������� that is� �f �� g�� � �u��� v����

�� Correct

�a� As in step ��a�� use the previously calculated values of the vorticity to

compute the divergence�free pointvalues of the velocity� at time tn�
�
� �

u��� �� tn� �
� ��

�b� Finally� the previously calculated pointvalues of the velocities and vorticity
are plugged into the second�order corrector step in order to compute the
staggered cell�averages of the vorticity at time tn���

&�n��
j� �

�

k� �

�

� 	
�

�
�&�nj
� ! &�nj��
�� !

�

�
���j
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�� �k� �

�
!

� 	 ��u��
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�
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�
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�

�
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�

�
���

�
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�
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!

� 	 ���v��
n� �

�
�
k�� � �v��

n� �
�

�
k � �j� �
�
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The specic recovery of the velocity eld outlined above� retains the dual
convective�conservative form of the vorticity variable� which in turn leads to the
maximum principle �����

min
jp��j� �

�
�j� �

�

jq��k� �
�
�j� �

�

f &wn
p
qg � &wn��

j� �
�

k� �

�

� max
jp��j� �

�
�j� �

�

jq��k� �
�
�j� �

�

f &wn
p
qg� �������

As in the compressible case � compare �������� the main idea in ���� is to rewrite
&�n��
j� �

�

k� �

�

as a convex combination of the cell averages at tn�

&�nj
k� &�nj��
k� &�nj
k��� &�nj��
k���

In gure ���� we show the central computation of a �thin� shear�layer problem�
���� For details� consult �����
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The thin� shear�layer problem� solved by the second�order central scheme
	�����
�	�����
 with spectral reconstruction of the velocity �eld�

The velocity formulation
Following ���� our goal is introduce a second�order central di�erence scheme for in�
compressible �ows� based on velocity variables� The use of the velocity formulation
yields a more versatile algorithm� The advantage of our proposed central scheme in
its velocity formulation is two�fold	 generalization to the three dimensional case is
straightforward� and the treatment of boundary conditions associated with general
geometries becomes simpler� The result is a simple fast high�resolution method�
whose accuracy is comparable to that of an upwind scheme� In addition� numer�
ical experiments show the new scheme to be immune to some of the well�known
deleterious consequences of under�resolution�

�	



We consider a two�dimensional incompressible �ow eld� u � �u� v�� so that
r � u � �� The equations of motion for a Newtonian �uid in conservation form are

ut �
�
�u� ! �ux � p

�
x

! ��uv ! �uy�y � fu�u� v� ux� � � � �x ! gu�u� v� ux� � � � �y

vt � ��uv ! �vx�x !
�
�v� ! �vy � p

�
y
� fv�u� v� ux� � � � �x ! gv�u� v� ux� � � � �y

�

�������

where p is the pressure� � is the kinematic viscosity� and subscripts denote partial
derivatives� The functions fu
v��� and gu
v��� are components of the �uxes of the
conserved quantities u and v�

The computational grid consists of rectangular cells of sizes �x and �y at time
level tn �n�t� these cells� Ci
j � are centered at �xi� i�x� yj � j�y�� Starting with
the corresponding cell averages� un � �uni
j � v

n
i
j�� we rst reconstruct a piecewise

linear polynomial approximation which recovers the point values of the velocity
eld� un�x� y� � �un�x� y�� vn�x� y��� For second�order accuracy� the piecewise linear
reconstructed velocities take the form�

un�x� y� � uni
j !
u�i
j
�x

�x� xi� !
u�

i
j

�y
�y � yj�� x� y � Ci
j � �������

As before� exact averaging over a staggered control volume yields

'ui� �
�

j� �

�
�tn��� � �

Z
C
i��

�
�j��

�

u�x� y� tn�dxdy �������

! �t

���D�
x �
Z tn��

	�tn

�
Z
y	J

j��
�

fu�xi� y� ��dyd�

���
! �t

���D�
y �
Z tn��

	�tn

�
Z
x	I

i��
�

gu�x� yj � � �dxd�

��� �

and a similar averaging applies for 'vn��
i� �

�

j� �

�

�

An exact computation yields

�
Z
C
i��

�
�j��

�

u�x� y� tn�dxdy � ��x �
�
y u

n
i
j � �x

�
D�
x �

�
y w

�
i
j � �y

�
D�
y �

�
xw

�

i
j � �������

The incompressible �uxes� e�g�� fu � �u� !�ux�px� are approximated in terms of
the midpoint rule � which in turn employs predicted midvalues which are obtained
from half�step Taylor expansion� Thus our scheme starts with a predictor step of
the form

u
n� �

�
i
j � uni
j � �t

�


�uni
j

w�i
j
�x

! uni
j
v�

i
j

�y
! vni
j

w�

i
j

�y
! Gxp

n
i
j � �r�

hui
j

�
�������

v
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�
i
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vni
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j
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j
�x
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j
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i
j

�y
! Gyp

n
i
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hvi
j

�
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Note that the predictor step is nothing but a forward Euler scheme conservation
form is not essential for the spatial discretization at this stage�

This is followed by a corrector step

�
�� ��t

�
r�
h

�eun��
i� �

�

j� �

�

� ��x �
�
y u

n
i
j � �x

�
D�
x �

�
y u

�
i
j � �y

�
D�
y �

�
x u

�

i
j !

�������

� �tD�
x �

�
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u
n� �

�
i
j u

n� �
�

i
j � �u�i
j
��x

�
!

� �tD�
y �

�
x


v
n� �

�
i
j u

n� �
�

i
j � �u�

i
j

��y

�
�

Note that the viscous terms are handled here by the implicit Crank�Nicholson
discretization which is favored due to its preferable stability properties� Here� we
ignore the pressure terms instead� the contribution of the pressure will be integrated
by enforcing zero�divergence �uxes at the last projection step�

Compute the potential �i
j solving the Poisson equation

h
D�
xD

�
x �

�
y �

�
y ! D�

y D
�
y �

�
x �

�
x

i
�i
j �

�

�t

h
D�
x �

�
y 'un��
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�

j� �

�

! D�
y �

�
x 'vn��

i� �
�

j� �

�

i
�

�������

Then� the pressure gradient at tn�� is being updated�

Gxp
n��

i� �
�

j� �

�

	� D�
x �

�
y �i
j � Gyp

n��

i� �
�

j� �

�

	� D�
y �

�
x �i
j � �������

and nally� it is used to evaluate the divergence�free velocity eld� un��

un��
i� �

�

j� �

�

� eun��
i� �

�

j� �

�

��tGxp
n��

i� �
�

j� �

�

� �������

In Figure ����� we plot vorticity contours for two shear layer problems studied in
���	 the inviscid �thick� shear layer problem corresponding to �u��� v

�
�� with � � ���

and a viscous �thin� shear layer problem �with � � � � ���	�� corresponding to
�u��� v

�
�� with � � ���� As in ���� both plots in Figures ����a and ����b are recorded

at time t � ���� and are subject to an initial perturbation v�� � with � � �����
Further applications of the central schemes for more complex incompressible �ows
�with �variable� axisymmetric coe�cients� forcing source)viscous terms� ����� can be
found in ����������

��
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Fig
 �
��� Contour lines of the vorticity� � � vx � uy� at t � ��� with initial
�u�� v�� � � 	�	�� using a ������� grid� 
a� A �thick� shear layer with � � �	�
and � � 	� The contour levels range from ��� to �� 
cf� Figure �c in Ref� �	���

b� A �thin� shear layer with � � �		� and � � � � �	��� The contour levels
range from ��	 to �	 
cf� Figure �b in Ref� �	���
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� The Spectral Viscosity Method

��� Introduction

Let PN stands for one of the standard spectral projections � Fourier� Chebyshev�
Legendre � � � � It is well known that such spectral projections� PNu� provide highly
accurate approximations for su�ciently smooth u�s� This superior accuracy is de�
stroyed if u contains discontinuities� Indeed� PNu produces O��� Gibbs� oscillations
in the local neighborhoods of the discontinuities� and moreover� their global accuracy
deteriorates to rst�order�

We are interested in spectral approximations of nonlinear conservation laws

�u

�t
!

�

�x
f�u� � �� �������

subject to initial conditions� u�x� �� � u�� and augmented with appropriate bound�
ary conditions� The purpose of a spectral method is to compute an approximation
to the projection of u��� t� rather than u��� t� itself� Consequently� since nonlinear
conservation laws exhibit spontaneous shock discontinuities� the spectral approxi�
mation faces two di�culties	

Stability� Numerical tests indicate that the convergence of spectral approxima�
tions to nonlinear conservation laws fails� In ��������� we prove	 that this failure
is related to the fact that spurious Gibbs oscillations pollute the entire com�
putational domain� and that the lack of entropy dissipation then renders these
spectral approximations unstable�
Accuracy� The accuracy of the spectral computation is limited by the rst order
convergence rate of PNu��� t��

With this in mind we turn to discuss the Spectral Viscosity �SV� method introduced
in ����� Our discussion focuses on three aspects	 the periodic Fourier SV method in
both � one and several space dimensions and the nonperiodic Legendre SV method�

In x��� we begin with the one�dimensional periodic problems� The purpose of
the SV method is to stabilize the nonlinear spectral approximation without sacric�
ing its underlying spectral accuracy� This is achieved by augmenting the standard
spectral approximation with high frequency regularization� In x��� we brie�y re�
view the convergence results of the periodic Fourier SV method� ���������� �����
���� ����� These convergence results employ high frequency regularization based on
second order viscosity� In x��� we discuss spectral approximations based on �super�
viscosity�� i�e�� high�frequency parabolic regularizations of order � �� These �super�
spectral viscosities were introduced and analyzed in ����� Extensions of the spec�
tral super viscosity to non�periodic problems was presented in ����� We prove the
H���stability of these spectral �super�viscosity� approximations� and together with
L��stability� convergence follows by compensated compactness arguments ����������

In x��� we turn to the nonperiodic case and discuss the Legendre SV method�
����� Extensions to and applications with Chebyshev SV method can be found in
�������������� Finally� the multidimensional problem is treated in x���� along the lines
of ����

	 Consult the counterexamples in the introductory section of Lecture IV below�

��



We close this introduction by referring to the numerical experiments in x���
quoted from ���� see also ����� These numerical tests show that by post�processing
the spectral �super��viscosity approximation� the exact entropy solution is recovered
within spectral accuracy� This post�processing is carried out as a highly accurate
mollication and operated either in the physical space as in �������������� or in the
dual Fourier space as in ��������������� It should be emphasized that the role of
post�processing is essential in order to realize the highly accurate content of the SV
solution�
For further applications in two� and three�dimensional atmospheric simulations we
refer to ������������ and the references therein�

��� The Fourier Spectral Viscosity �SV� method

To solve the periodic conservation law ������� by a spectral method� one employs
an N �degree trigonometric polynomial

uN �x� t� �
X
jkj�N

buk�t�eikx � �������

in order to approximate the Fourier projection of the exact entropy solution� PNu�


Starting with uN �x� �� � PNu��x�� the classical spectral method lets uN �x� t� evolve
according to the approximate model

�uN
�t

!
�

�x

�
PN
�
f�uN �

��
� � � �������

As we have already noted� the convergence of uN towards the entropy solution of
�������� uN �

N��
u� may fail� ����� Instead� we modify ������� by augmenting it

with high frequency viscosity regularization which amounts to

�uN
�t

!
�

�x

�
PNf

�
uN �x� t�

��
� �N ����s��

�s

�xs

h
Qm�x� t� � �

suN
�xs

i
� s � ��

������s�

This kind of spectral viscosity can be e�ciently implemented in Fourier space as

�N
�s

�xs

h
Qm�x� t� � �

suN
�xs

i
	� �

X
m�jkj�N

�ik��s bQk�t�buk�t�eikx � �������

It involves the following three ingredients	

� the viscosity amplitude� � � �N �

� � �N � �Cs
N�s��  �������

Here� Cs is a constant which may depend on the xed order of super�viscosity� s�
�A pessimistic upper bound of this constant will be specied below � consult
��� Theorem ������


 The spectral Fourier projection of u�x� is given by
P

jkj�N �u� eikx�eikx the pseu�

dospectral Fourier projection of u�x� is given by
P

jkj�N 	 u� eikx � eikx� where

	 u� eikx �	� �x
P

�
u�x��e�ikx� is collocated at the �N ! � equidistant grid�

values x� � ����x� PNu denotes either one of these two projections�

��



� the e�ective size of the inviscid spectrum� m � mN �

m � mN � N�� � 	
�s� �

�s
 �������

� the SV smoothing factors� bQk�t�� which are activated only on high wavenum�
bers� jkj � mN � satisfying

��
�

m

jkj

� �s��
�

� bQk�t� � �� jkj � mN � �������

The SV method can be viewed as a compromise between the total�variation
stable viscosity approximation � see ������� and ������s� below � which is restricted
to rst order accuracy �corresponding to � � ��� and the spectrally accurate yet
unstable spectral method ������� �corresponding to � � ��� The additional SV on
the right of ������s� is small enough to retain the formal spectral accuracy of the
underlying spectral approximation� i�e�� the following estimate holds

k�N �s�p

�xs�p

�
Qm�x� t� � �suN

�xs

�
kL��x� � Const �N���q�p���k �quN

�xq
kL��x��


q � p ! � � ���

�������

At the same time this SV is shown in x� � � to be large enough so that it enforces a
su�cient amount of entropy dissipation� and hence � by compensated compactness
arguments � ���������� to prevent the unstable spurious Gibbs� oscillations�

The Fourier SV method � �nd order viscosity
The unique entropy solution of the scalar conservation law ������� is the one which
is realized as the vanishing viscosity solution� u � lim��� u�� where u� satises the
standard viscosity equation

�u�

�t
!

�

�x
f�u��x� t�� � �

��

�x�
u��x� t�� �������

This section provides a brief review of the convergence results for the Fourier
SV method ������s� with s � �� The convergence analysis is based on the close
resemblance of the Fourier SV method ������s� with s � � to the usual viscosity
regularization �������� To quantify this similarity we rewrite ������s� with s � � in
the equivalent form

�uN
�t

!
�

�x
f�uN �x� t�� � �������

� �N
��uN
�x�

� �N
�

�x

h
RN�x� t� � �uN

�x

i
!

�

�x
�I � PN �f�uN ��

where

RN �x� t� 	�

NX
k��N

,Rk�t�eikx� ,Rk�t� �
�

� jkj 	 mN �

�� ,Qk�t� jkj � mN �
�������

Observe that the SV approximation in ������� contains two additional modi�
cations to the standard viscosity approximation in ��������

��



fig The second term on the right of ������� measures the di�erence between the
spectral viscosity� �N

�
�x

�
Qm�x� t� � �uN

�x

�
� and the standard vanishing viscosity�

�N
��uN
�x�

� The following straightforward estimate shows this di�erence to be L��
bounded 
� 	 �

�
�

k�N �

�x

h
RN ��� t� � �uN

�x

i
kL� � �������

� Const � �N �

m

���
N max

jkj�mN

jkj����� ! m�
N

�
kuN ��� t�kL�

� Const �N����kuN ��� t�kL�

� Const � kuN ��� t�kL� � 
� � �

�
�

fiig The spectral projection error contained in the third term on the right of �������
does not exceed

k�I � PN�f�uN ��� t��kL� � Const
�

N
k �

�x
uN ��� t�kL� � �������

Equipped with the last two estimates one concludes the standard entropy dissipa�
tion bound� ����� ����� ����� ����

kuN ��� t�kL� !
p
�Nk�uN

�x
kL�

loc
�x
t� � Const� �N � �

N
� �������

The inequality ������� is the usual statement of entropy stability familiar from
the standard viscosity setup �������� For the L��stability of the Fourier SV ap�
proximation consult e�g� ��������� x�� and ��� x�� for the one� and respectively�
multi�dimensional problems� The convergence of the SV method then follows by
compensated compactness arguments� ����������

We note in passing that the the Fourier SV approximation ������s�� �������
������� shares other familiar properties of the standard viscosity approximation
�������� e�g�� total variation boundedness� Oleinik�s one�sided Lipschitz regularity
�for � 	 �

�
�� L��convergence rate of order one�half� ����������

Fourier SV method revisited � super viscosity
In this section we remove the restriction � 	 �

�
in �������� which limits the portion

of the inviscid spectrum� The key is to replace the standard second�order viscosity
regularization ������� with the �super�viscosity� regularization

�u�

�t
!

�

�x
f�u��x� t�� � �����s��

��s

�x�s
u��x� t�� ������s�

The convergence analysis of the spectral �super�viscosity� method ������s� is
linked to the behavior of the �super�viscosity� regularization ������s�� To this end

�	



we rewrite ������s� in the equivalent form

�uN
�t

!
�

�x
f�uN �x� t�� � �N����s��

��suN
�x�s

!

!�N
����s

�xs

h
RN �x� t� � �

suN
�xs

i
!

�

�x
�I � PN�f�uN � �

	� I��uN� ! I��uN � ! I��uN ��

�������

As before� we observe that the second and third terms on the right of �������� I��uN �
and I��uN �� are the two additional terms which distinguish the spectral �super�
viscosity� approximation ������� from the super�viscosity regularization ������s��
In the sequel we shall use the following upper�bounds on these two terms�

fig The second term� I��uN�� measures the di�erence between the SV regulariza�
tion in ������� and the �super�viscosity� in ������s�� Using the SV parameteri�
zation in �������� ������� and ������� �in this order�� we nd that this di�erence
does not exceed

k�N ����s

�xs

h
RN ��� t� � �

suN
�xs

i
kL� � �������

� �N


m�s
N ! m

�s��
�

N max
jkj�mN

jkj�s� �s��
�

�
kuN ��� t�kL�

� Const �N�s���s��kuN ��� t�kL�

� Const � kuN ��� t�kL� � 
� � �s� �

�s
�

Thus� the second term on the right of �������� I��uN �� is L��bounded 	

kI��uN�kL��x� � ConstkuN ��� t�kL��x�� �������

fiig Regarding the third term� I��uN �� we shall make a frequent use of the spectral
estimate which we quote from ��� x����� stating that��

k �p

�xp
�I � PN �f�uN ��� t��kL� � �������

� Cq �

Nq�p k
�q

�xq
uN ��� t�kL� � 
q � p � ��� q �

�

�
�

�The restriction q � �
�

is required only for the pseudospectral Fourier projection�
PN � whose truncation estimate in provided in e�g�� ���� Lemma ������ An upper
bound on the constants Cs appearing on the right of ������� is given by ���
Theorem ����

Cs �
sX

k��

kf���kCkkuNkk��L�  �������

� As usual we let �pxw�x� 	�
X
k ���

�ik�p ,w�k�eikx� Note that if
R
w�x�dx � � then

�pxw�x� with p 	 � coincides with the jpj�th order primitive of w�x��
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this estimate may serve as a �pessimistic� bound for the same constant used in
conjunction with the viscosity amplitude� �N � in ��������

Next we turn to the behavior of the quadratic entropy of the SV solution� U�uN � �
�
�
u�N � �A similar treatment applies to general convex entropy functions U�uN ���

Multiplication of ������� by uN implies

�

�

�

�t
u�N !

�

�x

Z uN


f ��
�d
 �

� uNI��uN � ! uNI��uN � ! uNI��uN � �

	� II��uN � ! II��uN� ! II��uN��

�������

The three expressions on the right ������� represent the quadratic entropy dissipa�
tion ! production of the SV method� Successive �di�erentiation by parts� enable
us to rewrite the rst expression as

II��uN � � �������

� �N
X

p ! q � �s� �
��p�s

����s�p��
�

�x

h
�puN
�xp

�quN
�xq

i
� �N

�
�suN
�xs

��

	� II���uN � ! II���uN ��

Similarly� the second expression can be rewritten as

II��uN� � �������

� �N
X

p�q�s��
����s�p
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�x

�
�puN
�xp


�qRN �x� t�

�xq
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suN
�xs
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!�N
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RN �x� t� � �
suN
�xs

	� II���uN � ! II���uN ��

Finally� we have for the third expression

II��uN � � �������

�
s��X
p��

����p
�

�x


�puN
�xp

��p

�x�p
�I � PN�f�uN �

�
!

!����s
�suN
�xs

��s��

�x�s��
�I � PN �f�uN �

	� II���uN� ! II���uN ��
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We arrive at the following entropy estimate which plays an essential role in the
convergence analysis of the SV method�

Lemma ��� Entropy dissipation estimate There exists a constant�
Const � kuN ��� ��kL� � but otherwise is independent of N�� such that the following
estimate holds

kuN ��� t�kL� !
p
�Nk�

suN
�xs

kL�
loc

�x
t� � Const� �N �
�Cs

N�s�� � �������

Remark ��� Observe that the entropy dissipation estimate in ������� is consider�
ably weaker in the �super�viscosity� case where s � �� than in the standard viscosity
regularization� s � � quoted in ��������

Proof� Spatial integration of ������� yields

�

�

d

dt
kuN ��� t�k�L� ! �Nk �s

�xs
uN ��� t�k�L� � �uN � I��uN ��L��x� ! �uN � I��uN��L��x��

�������

According to �������� the rst expression on the right of the last inequality does
not exceed

j�uN � I��uN ��L� j � Const � kuN ��� t�k�L� � �������

According to ����c�� the second expression on the right� ����s �
suN
�xs

��s��

�x�s�� �I �
PN �f�uN �� and by ������� it does not exceed

j�uN � I��uN ��L� j � k�
suN
�xs

kL� � Cs
N�s�� k

�suN
�xs

kL� � �������

� �

�
�Nk �s

�xs
uN ��� t�k�L� �

�In fact� in the spectral case� the second expression vanishes by orthogonality ��
The result follows from Gronwall�s inequality�

Equipped with Lemma ��� we now turn to the main result of this section� stating

Theorem ��� Convergence Consider the Fourier �super�viscosity� approxima�
tion �����s��������� subject to L��initial data� uN ��� ��� Then uniformly bounded
uN converges to the unique entropy solution of the convex conservation law �������

Proof� We proceed in three steps�
Step �� L��stability�� The L��stability for spectral viscosity of �nd order�

s � �� follows by Lp�iterations along the lines of ���� and ���� �we omit the details��
The issue of an L� bound for spectral viscosity of �super� order s � � remains an
open question� The intricate part of this question could be traced to the fact that

��



already the underlying super�viscosity regularization ������s�� lacks monotonicity
for s � �	 instead� it exhibits additional oscillations which are added to the spectral
Gibbs� oscillations �Both types of oscillations are post�processed without sacricing
neither stability nor spectral accuracy��

Step �� H���stability�� We want to show that both � the local error on the

right hand�side of ��������
X

��j��
Ij�uN �� and the quadratic entropy dissipation !

production on the right of ��������
X

��j��
IIj�uN�� belong to a compact subset of

H��
loc �x� t��

To this end we rst prepare the following� Bernstein�s inequality gives us 
p 	 s � q

k�N
h
�puN
�xp

�quN
�xq

i
kL�

loc
�x
t� � Const � �Nk�

puN
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kL� � k�
quN
�xq

kL�
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� � � by Bernstein inequality � � � � Const � �N �NpkuNkL��

�Nq�sk�
suN
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kL�
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t� �

� � � by Lemma ��� � � � � Const � p�N �Np�q�skuNkL� �

� p�Cs �Np�q��s� �
� � kuNkL� � �������

Consider now the rst two expressions� I��uN � and II��uN �� The inequality
������� with �p� q� � ��� �s� �� implies that I��uN � tends to zero in H��

loc �x� t�� for

kI��uN �k
H��
loc

�x
t�
� Const �

p
�Cs�N � kuNkL�  �� �������

We turn now to the expression II��uN� in �������	 its rst half tends to zero in
H��
loc �x� t�� for by ������� we have 
p ! q � �s� ��

kII���uN�k
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X

p ! q � �s� �
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� Const � s
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the second half of II� in �������� ��N
�
�suN
�xs

��
� is bounded in L�

loc�x� t�� consult
Lemma ���� and hence by Murat�s Lemma ����� belongs to a compact subset of
H��
loc �x� t�� We conclude

II���uN � �
H��
loc

�x
t�

� �� �������
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We continue with the next pair of expressions� I��uN � and II��uN�� According
to �������� I��uN � � and therefore also II��uN � � uNI��uN � � are L��bounded�
and hence belong to a compact subset of H��

loc�x� t� in fact� by repeating our pre�
vious arguments which led to ������� one nds that

kI��uN �kH���x
t� � Const � �Nms��
N k�

suN
�xs

kL��x
t� � �������

� Const � p�Nms��
N � p�Cs �N� �s��

�s  ��

A similar treatment shows that the rst half of II��uN � in ������� tends to zero in
H��
loc �x� t�� for
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Nk
�suN
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kL�
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� Const � p�N
X

p�q�s��
Np�qkuNkL� � s

p
�Cs�N � kuNkL�  ��

The second half of II��uN � is L��bounded� for

kII���uN� � �N
�suN
�xs

RN �x� t� � �
suN
�xs

kL� � �������

Const � �Nk�
suN
�xs

k�L�
loc

�x
t� � Const�

Finally we treat the third pair of expressions� I��uN� and II��uN �� The spectral
decay estimate ������� with �p� q� � ��� s�� together with Lemma ��� imply that
I��uN � tends to zero in H��

loc �x� t� indeed

kI��uN � � �

�x
�I � PN �f�uN �k

H��
loc

�x
t�
�������

� Cs
Ns
k�

suN
�xs

kL� �
p

�Cs�N  ��

A similar argument applies to the expression II��uN� given in ����c�� Sobolev
inequality � consult �������� followed by the spectral decay estimate ������� imply
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that the rst half of II��uN � does not exceed

kII���uN� � �������
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According to Lemma ���� the second half of II��uN� is L��bounded� for

kII���uN � � �suN
�xs

��s��

�x�s��
�I � PN �f�uN �kL� � �������

� k�
suN
�xs

kL� Cs
N�s�� k

�suN
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kL� � Const�

and hence by Murat�s Lemma ����� belongs to a compact subset of H��
loc�x� t��

We conclude that the entropy dissipation of the Fourier spectral �super�viscosity�
method� for both linear and quadratic entropies� belongs to a compact subset of
H��
loc �x� t��

Step �� Convergence�� It follows that the SV solution uN converges strongly
�in Lploc� 
p 	�� to a weak solution of �������� In fact� except for the L��bounded
terms II���uN � and II���uN �� we have shown that all the other expressions which
contribute to the entropy dissipation tend either to zero or to a negative measure�
Using the strong convergence of uN it follows that II���uN � and II���uN � also tend
to zero� consult ����� Hence the convergence to the unique entropy solution�

Remarks�

�� Low pass �lter ���� We note that the spectral �super�viscosity� in ������s� allows
for an increasing order of parabolicity� s � N� � 	 ��� �at least for bounded
Cs�s�� This enables us to rewrite the spectral �super�viscosity� method in the
form

�uN
�t

!
�

�x
�PNf�uN �� � �N

X
jkj�N

��
k

N
�,uk�t�eikx� �������

where ��
� is a symmetric low pass lter satisfying

��
�

�� j
j�s� j
j � ��

� j
j�s � �
N
� j
j � ��

�������

In particular� for s � N� one is led to a low pass lter which is C��tailored
at the origin� consult �����
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�� Super viscosity regularization� The estimates outlined in Theorem ��� imply the
convergence of the regularized �super�viscosity� approximation u� in ������s��
to the entropy solution of the convex conservation law ��������

Assertion ���

Consider the �super�viscosity� regularization ������s��

�u�

�t
!

�

�x
f�u��x� t�� � �����s��

��s

�x�s
u��x� t�� �������

subject to given L�
T

L��initial data� u��� ��� Assume that u� is uniformly
bounded� Then u� converges to the unique entropy solution of the convex con�
servation law ��������

The question of L� bound for the superviscosity case � ������� with s � �� is
open� Unlike the regular viscosity case� the solution operator associated with
������� with s � � is not monotone � here there are �spurious� oscillations� on
top of the Gibbs� oscillations due to the Fourier projection� What we have shown
is that the oscillations of either type do not cause instability� Moreover� these
oscillations contain� in some weak sense� highly accurate information on the
exact entropy solution this could be revealed by post�processing the spectral
�super��viscosity approximation� e�g� �����

��� Non�periodic boundaries

In this section we discuss the Legendre SV method� ����� Extensions to Chebyshev
SV method can be found in ����� ����� Applications to atmospheric simulations can
be found in ����

The Legendre SV approximation
In the spectral viscosity approximation of ������� we seek a IPN �polynomial of the

form uN �x� t� �

NX
k��

,uk�t�Lk�x�� such that 
� � IPN ���� ��� we have

�
�

�t
uN !

�

�x
INf�uN �� ��N � ��N�Q

�

�x
uN �

�

�x
��N ! �B�uN�� ��N � �������

The approximation ������� involves the boundary operator� B�uN �� and the Spec�
tral Viscosity operator� Q� Here� B�uN� is a forcing polynomial in IPN ���� �� of the
form

B�uN� � ��t���� x� ! ��t��� ! x��L�N �x�� �������

involving �at most� two nonzero free parameters� �t� and ��t�� which should en�
able uN �x� t� to match in�ow boundary data prescribed at x � �� whenever
�f ��uN���� t�� 	 �� And� Q denotes the spectral viscosity operator�

Q� �
NX
k��

,Qk ,�kLk� 
� �

�X
k��

,�kLk� �������

��



which is associated with bounded viscosity coe�cients������
,Qk � � k � mN �

� � ,Qk � ��
�
mN

k

��
k � mN �

�������

The free pair of spectral viscosity parameters ��N �mN� will be chosen later� such
that �N � � and mN � �� in order to retain the formal spectral accuracy of �������
with �������� We close this section by explaining how the SV method ������� can be
implemented as a collocation method� Let us �test� ������� against � � �i� where �i
is the standard characteristic polynomial of IPN ���� �� satisfying �i�
j� � �ij � � �
i� j � N � At the interior points we obtain

d

dt
uN �
i� t� !

�

�x
INf�uN ��
i� t� � �N

�

�x
Q�

�

�x
uN ��
i� t�� � � i � N � ��

�������

These equations are augmented� at the out�ow boundaries� �say at x � !��� with

d

dt
uN �!�� t� !

�

�x
INf�uN ��!�� t� � �������

� �N
�

�x
Q�

�

�x
uN ��!�� t�� �N

�N
Q�

�

�x
uN ��!�� t��

We note that the last term on the right of ������� prevents the creation of a bound�
ary layer� Equations �������� ������� together with the prescribed in�ow data �say
at x � ���� furnish a complete equivalent statement of the pseudospectral �collo�
cation� viscosity approximation ��������

The SV approximation ��������������� enjoys formal spectral accuracy� i�e�� its
truncation error decays as fast as the global smoothness of the underlying solution
permits� However� it is essential to keep in mind that this superior accuracy cannot
be realized in the presence of shock discontinuities� unless the nal SV solution is
post�processed� The rest of this section is devoted to clarify this point�

Epilogue � on spectral post�processing
It is well�known that spectral projections like �Nu� INu� etc�� provide highly ac�
curate approximations of u� provided u itself is su�ciently smooth� Indeed� these
projections enjoy spectral convergence rate� This superior accuracy is destroyed if u
contains discontinuities	 both �Nu and INu produce spurious O��� Gibbs� oscilla�
tions which are localized in the neighborhoods of the discontinuities� and moreover�
their global accuracy is deteriorated to rst�order�

To accelerate the convergence rate in such cases� we follow a similar treatment
in ���� for the Fourier projections of discontinuous data� We introduce a mollier
of the form

��
p�x y� � ��
x� y

�
�Kp�x y�� �������

which consists of the following two ingredients	

� ��x� is a C�� ���� ���localizer satisfying ���� � � 

��



� Kp�x y� is the Christo�el�Darboux kernel

Kp�x y� �
pX

j��

Lj�x�Lj�y�

kLjk� �
�p ! ��

�

Lp���x�Lp�y�� Lp���y�Lp�x�

x� y
� �������

We let F�
� denote the smoothing lter

F�
�w�x� �
Z �

x���
��
p��N

� �x y�w�y�dy� �������

depending on the two xed parameters� �� � � ��� ��� Then� the following spectral
error estimate was derived in ����	 
s � � there exists a constant Cs
� such that

ju�x�� F�
���Nu��x�j � �������

Cs
�

��N���������skukL����
� ! N�� �
�
�s�� max

jx�yj��
��j�s

jDju�y�j

�� �

Similar estimate holds for IN � These estimates show �at least for � 	 �
�
� that except

for a small neighborhood of the discontinuities �measured by the free parameter ���
one can lter the Legendre projections� �Nu and INu� in order to recover pointwise
values of u within spectral accuracy�

Next� let u be the desired exact solution of a given problem� The purpose of a
spectral method is to compute an approximation to the projection of u rather than u
itself� Consequently� if the underlying solution of our problem is discontinuous� then
the approximation computed by a spectral method� uN � exhibits the two di�culties
of local Gibbs� oscillations� and global� low��rst��order accuracy�

With this in mind� we now turn to discuss the present context of nonlinear
conservation laws� The standard� viscous�free spectral method supports the spu�
rious Gibbs� oscillations which render the overall approximation unstable �consult
the introductory counterexamples in Lecture IV below�� The task of the Spectral
Viscosity is therefore two fold	 to stabilize the standard spectral method �� which
is otherwise unstable�� and to retain the overall spectral accuracy of the underlying
spectral method�

The question of stability is addressed in the following sections	 we prove that
Spectral Viscosity guarantees the H���stability �and hence the convergence� of the
Legendre SV approximation�

Lploc � limuN �x� t� � u�x� t�� 
p 	�� �������

The question of spectral accuracy requires further clarication� As noted above� the
Legendre SV solution� uN ��� t�� should be considered as an accurate approximation
of INu��� t�� rather than u��� t� itself� Therefore� the convergence rate of the SV
method is limited by the rst order convergence rate of INu��� t�� �Of course� this
limitation arises once shock�discontinuities are formed�� We recall that according
to �������� this rst�order limitation can be avoided by ltering INu	 the �ltered
interpolant� F�
��INu�� retains a spectral convergence rate� at least in smooth
regions of the discontinuous entropy solution u��� t�� This suggests to apply the

��



same ltering procedure ������� to uN ��� t�� in order to accelerate the convergence
rate of the SV method�

Let f,uk�t�gNk�� denote the computed coe�cients of the Legendre SV method�
The computation of the SV solution is based on adding spectral viscosity only
to the �high� modes � those with wavenumbers k � mN � Therefore� one expects

the computation of the viscous�free coe�cients� at least� ,uk�t� � �uN � Lk�N
kLkk�N

� k �

�� � � � �mN � to be spectrally accurate approximation of the exact pseudospectral

Legendre coe�cients�
�u� Lk�N
kLkk�N

� Assuming that indeed this is the case� then ac�

cording to ������� one can post�process the SV solution� uN��� t�� in order to re�
cover spectral convergence rate in smooth regions of the entropy solutions� Thus�
at the nal stage of the SV method� ��������������� should be augmented with the
post�processing procedure

F�
�uN �x� t� �

Z �

x���
��
p�N

�

�x y�uN�y�dy� �������

The numerical experiments in ���� conrm that the SV method contains a spectrally
accurate information about the discontinuous solution � by post�processing one
recovers this information despite the presence of shock discontinuities�

We conclude by noting that the post�processing of the SV solution plays a nec�
essary key role in realizing the spectral accuracy of the SV method within smooth
regions of the underlying solution� The treatment of Gibbs� oscillations in the neigh�
borhood of discontinuities requires an alternative �one�sided� ltering procedure�
which is studies in e�g�� ����

Convergence of the Legendre SV method
We want to prove the convergence of ������� by compensated compactness argu�
ments� To this end we want to show that �

�t
U�uN �! �

�x
F �uN � belongs to a compact

subset of H��
loc�x� t� for all convex entropy pairs �U�uN �� F �uN��� Our main tool in

this direction reads ���� x��

Lemma ��� A weak representation of the truncation error of the Legendre viscosity
approximation ������ is given by

�
�

�t
uN !

�

�x
f�uN �� �� �


X
j��

Ij���� ��x� t� � D����� ���� �������

where the following estimates hold	

�X
j��

jIj���j � O�
�p
�N

�
h
k�� �Nk !

�

N
k �

�x
�Nk

i
� �������

jI����j � O��Nm
�
N

p
lnN�k �

�x
�Nk� �������

jI	��� � ��N�
�

�x
uN �

�

�x
�N �j � O�

p
�N�k �

�x
�Nk� �������

�	



I
��� � �����N��

Z T

t��

�t��N���� t�dt� �������

Here� �N ��� t� is an arbitrary IPN �polynomial at our disposal�

Appropriate choices of test functions� �N yield the desired convergence result�

Theorem ��� Let uN �x� t� be the Legendre viscosity approximation of �������
������� with spectral viscosity parameters ��N �mN � which satisfy

� � �N � �

N�
� mN 	 Const �N q

� with � 	 q 	 � � �� �������

Then� a subsequence of� uN �x� t� converges strongly in Lploc� p 	�� to a weak so�
lution of the conservation law ������� Moreover� if � 	 �� then the whole sequence
of� uN �x� t� converges strongly to the unique entropy solution of �������

��
 Numerical results

In this section we will present numerical experiments which demonstrate the per�
formance of the Legendre SV method for systems of conservation laws� We consider
the approximate solution of the Euler equations of gas dynamics�

�

�t
u�x� t� !

�

�x
f�u�x� t�� � �� u �

�
�
�v
E

�
f�u� �

�
�v

�v� ! p
v�E ! p�

�
� �������

where � denotes the density of the gas� v its velocity� m � �v its momentum� E
its energy per unit volume and p � � � �� � �E � �

�
�v�� its �polytropic� pressure�

 � ����
The Legendre SV approximation of this system reads

d

dt
uN �
i� t� !

�

�x
INf�uN ��
i� t� � �N

�

�x
Q�

�

�x
uN ��
i� t�� � � i � N � ��

�������

Here� uN � t��N � �NvN � EN � � IP �
N ���� �� denotes the polynomial approximation

of the ��vector of �density� momentum� energy�� and Q abbreviates a general �� �
spectral viscosity matrix� f ,Q�
j

k gNk�mN
� � � !� j � � which is activated only on �high�

Legendre modes� i�e�� ,Q�
j
k � �� 
k � mN �!� j�� The numerical results reported in

this section were obtained using a simple scalar viscosity matrix�

Q�
�

�x
uN � � t�Q

�

�x
�N � Q

�

�x
�NvN � Q

�

�x
EN �� �������

with the viscosity coe�cients� ,Qk�given by

,Qk � expf� �k �N��

�k �mN��
g� k � mN � �������

The Legendre SV method �������������� amounts to a nonlinear system of �N !
��� ODEs which was integrated in time using the second order Adams�Bashforth
ODE solver� We implemented the SV method for two test problems�

��



� The Riemann shock tube problem ����� Our rst example is the Riemann
problem �������� subject to initial conditions

u�x� �� �

�
u� � t���� �� ����� x 	 ��

ur � t������� �� ������ x � ��
�������
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Fig
 �
��� Density �N with N��� Legendre modes� �a before and �b after
post�processing
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Fig
 �
��� Velocity vN with N��� Legendre modes� �a before and �b after
post�processing


��



0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

ooooooooooooooooooooooooooooooooo
o

o

o

o

o
o

o
o
o
o
o
o
o
o
o
o
oooooooooooooooo

o
ooo

ooooo

o

o

o
o
ooooooooooooooooooooooo

0

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

ooooooooooooooooooooooooooooooooo
o

o

o

o

o

o
o
o
o
o
o
o
o
o
o
o
oooooooooooooooooooooooooo

o

o
oooooooooooooooooooooooo

Fig
 �
��� Pressure vN with N��� Legendre modes� 
a� before and 
b� after
post�processing�

Figures ����a� ����a and ����a display the computed density �N � velocity vN �
and pressure pN � with N � ��� Legendre modes� The numerical results in these g�
ures show that the presence of Spectral Viscosity guarantees the convergence of the
pseudospectral Legendre method that is otherwise unstable� However� Gibbs� oscil�
lations which are inherited from the projected solution� INu��� t�� are still present�

To remove these oscillations without sacricing spectral accuracy� the SV solu�
tion on the left side of gures ��������������� was post�processed using the ltering
procedure �������� F�
� with ��� �� � ����� ������ Again� as in the scalar case� the
post�processing leads to a dramatic improvement in the quality of the computed
results� revealing the high�resolution content of the SV computation� In particular�
comparing the results obtained by the post�processed SV method in gures ����b�
����b� we nd the representation of the rarefaction wave and the capturing of the
contact discontinuity to be better than the results obtained by the nite�di�erence
methods in ���� or the high�resolution schemes in ����� �It is worthwhile noting
that these high resolutions results of the SV computations were obtained without
the costly characteristic decompositions which are employed in the modern high
resolution nite di�erence approximations��

The resolution of the shock discontinuity� however� still su�ers from a smearing
of spurious Gibbs� oscillations� As told by the error estimate �������� the oscilla�
tions in the neighborhood of the discontinuities cannot be removed by the ltering
procedure �������� Instead� these oscillations can be avoided by using an alternative
�one�sided� lter which is currently under investigation ����
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b� after
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� The shock�disturbance interaction e�g�� �SO�� Our second example models the
interaction of a sinusoidal disturbance and a shock wave due to initial conditions

���x� ��� v�x� ��� p�x� ��� �

�
���������� ���������� ���������� x 	 �����

��� ! ��� sin���x�� ��� ���� x � �����
�������

The exact solution of this problem� ���������������� consists of a density wave that
will emerge behind the shock discontinuity� and the ne structure of this density
wave makes the current problem a suitable test case for high order methods� For
example� second order MUSCL type schemes� ����� are unable to resolve the ne
structure of the density wave unless the number of grid points is substantially
increased�

The Legendre SV method was implemented in this case with SV parameters
��N �mN � � � �

N
� �
p
N�� Figures ��������� display the numerical results of the SV

approximation which was integrated in time by the second�order Adams�Bashforth
method with time step �t � ��� � ���
�

Figures ����a� ����a� and ����a show the approximated density �N � velocity
vN � and pressure pN at t � ����� computed with N � ��� Legendre modes� These
results were post�processed by the ltering procedure �������� F�
�� with ��� �� �
����� ������ Figures ����b� ����b and ����b present the post�processed results� which
show that the velocity and pressure waves are well resolved� The density wave still
contains Gibbs� oscillations in the neighborhood of the shock discontinuity� and
its rst extremum behind the shock is smeared by our smoothing lter� Here� a
�one�sided� lter would be recommended instead� A better resolution of the density
prole near the shock was obtained by a di�erent spectral method presented in ����
However� the latter is a shock tting like method which might not be easy to extend
to higher dimensions�
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��� Multidimensional Fourier SV method

We want to solve the multidimensional ���periodic initial�value problem� ������� by
a spectral method� To this end we approximate the spectral)pseudo�spectral projec�
tion of the exact entropy solution� PNu��� t�� using an N �trigonometric polynomial�
uN �x� t� �

P
j�j�N ,u��t�e

i�
x� which is governed by the semi�discrete approximation

�

�t
uN �x� t� ! �x � PNf�uN �x� t�� � �N

dX
j
k��

��jkQ
j
k
N �x� t� � uN �x� t�� �������

Together with one�s favorite ODE solver� ������� gives a fully discrete method for
the approximate solution of ��������

To suppress these oscillations� without sacricing the overall spectral accuracy�
we augment the standard Fourier approximation on the right�hand side of �������
by spectral viscosity� which consists of the following three ingredients	

� A vanishing viscosity amplitude� �N � of size

�N � N�� � � 	 �� �������

� A viscosity�free spectrum of size mN �� ��

mN � N
�
�

�logN�
d
�

� � 	 �� �������

� A family of viscosity kernels� Qj
k
N �x� t� �

PN

j�j�mN

,Qj
k
� �t�ei�
x� � � j� k � d�

activated only on high wavenumbers j
j � mN � which can be conveniently
implemented in the Fourier space as

�N

dX
j
k��

��jkQ
j
k
N � uN �x� t� � �������

� ��N
NX

j�j�mN

	 ,Q�
� 
 � ,u��t�e
i�
x� 	 ,Q�
� 
 ��

dX
j
k��

,Qj
k
� �t�
j
k�

The viscosity kernels we deal with� Qj
k
N �x� t�� are assumed to be spherically symmet�

ric� that is� ,Qj
k
� � ,Qj
k

p � 
j
j � p� with monotonically increasing Fourier coe�cients�
,Qj
k
p � that satisfy

j ,Qj
k
p � �jkj � Const�

m�
N

p�
� 
p � mN � �������

The main convergence result� quoted from ���� are based on the following two
lemmas�

Lemma ��� L� stability There exists a constant such that

kuN ��� t�kL��x� � Const � kuN ��� ��kL��x�� 
t � T� �������
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Lemma ��� Entropy Consistency There exists a vanishing sequence� eN � such
that

�

�t
U�uN � ! �x � F �uN� � eN  �� in D�� �������

Proofs of Lemma ��� and Lemma ���can be found in ���� Granted the L��
stability and the entropy consistency� we can combine DiPerna�s uniqueness result
for measure�valued solutions ��� with the niteness of propagation speed �see also
���� for the case of bounded domains� to conclude the following�

Theorem ��� Let uN be the solution of the SV approximation ��������������
subject to bounded initial conditions satisfying

kuN ��� ��kL��x� ! �sk�sxuN ��� ��kL��x� � Const� �������

Then uN converges strongly to the unique entropy solution of �������
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� Convergence Rate Estimates

Abstract� Let fv��x� t�g��� be a family of approximate solutions for the convex
conservation law ut ! f�u�x � � subject to C�

� �initial data� u��x�� The notion of
approximate solutions is quantied in terms of Lip��consistency	 we assume that
fv��x� t�g are Lip��consistent in the sense its initial!truncation errors are of order
O���� kv���� ��� u����kLip��x� ! kv�t ! f�v��xkLip� �x
t� � O���� Here� � is the �small
scale� of the approximate solution� e�g�� the vanishing amplitude of size �� a gridsize
of order � � �x� etc� We then prove that stability implies convergence namely�
if fv��x� t�g are Lip��stable � � in the sense that they satisfy Oleinik�s E�entropy
condition�� then they converge to the entropy solution� and the convergence rate
estimate kv���� t�� u��� t�kLip� �x� � O��� holds� Consequently� the familiar Lp�type

and new pointwise error estimates are derived� In particular� we recover classical L��
estimates �*a al Kuznetsov� of order O�

p
��� And we improve it to an O��� pointwise

error estimate for all but nitely manyO����neighborhoods of shock discontinuities�
These convergence rate results are then demonstrated in the context of various

approximate solutions� including Chapman�Enskog regularization� nite�di�erence
schemes� Godunov�type methods� spectral viscosity methods� ���


�� Introduction

We are concerned here with the convergence rate of approximate solutions to the
nonlinear scalar conservation law�

ut ! f�u�x � �� �������

subject to C�
� �initial conditions�

u�x� �� � u��x�� �������

In this context we rst recall Strang�s theorem which shows that the classical Lax�
Richtmyer �LR� linear convergence theory applies for such nonlinear problem� as
long as the underlying solution is su�ciently smooth e�g�� ���� x��� The generic
convergence error estimate in this context reads

kv���� t�� u��� t�k � CT
�
kv���� ��� u����k! kv�t ! f�v��xk

�
� � � t � T� �������

Here� fv�g� is a family of approximate solutions which is tagged by its �small scale��
�� e�g�� a viscosity amplitude of size �� a gridcells of size � � �x� the number of
Fourier modes� N � ���� etc� The linear Lax�Richtmyer theory tells us that if the
approximate solution is stable� kv���� t�k � Const� then the error� kv���� t��u��� t�k
is upper bounded by the initial!truncation errors� given respectively on the right
of �������� In particular� if the approximation is consistent � � in the sense that
that its initial!truncation errors tend to zero as � � ��� then stability implies
convergence�
What norm� k � k� should be used in �������# The linear Lax�Richtmyer theory is
often implemented in term of the L� norm likewise� Strang�s extension to nonlinear
smooth problems is usually expressed in terms of higher Sobolev Hs norms� There
are two main reasons for the use of the L� framework	

��



�� It is the appropriate topology to measure stability and well�posedness of hy�
perbolic systems 

�� The Fourier space serves as a �mirror site� for the real space L��stability and
error analysis� The von�Neumann stability analysis for nite�di�erence schemes
is a classical example�

Since the solutions of the nonlinear conservation laws develop spontaneous
shock�discontinuities at a nite time� however� Strang�s result does not apply be�
yond this critical time� Indeed� the Fourier method as well as other L��conservative
schemes provide simple counterexamples of consistent approximations which fail
to converge �to the discontinuous entropy solution�� despite their linearized L��
stability� Here are two counterexamples in this directions �more can be found in
������������

Counterexample � ����� The Fourier approximation of the ���periodic equation
�������� expressed in term of the Fourier partial sum projection SN � reads

�

�t
�vN �x� t�� !

�

�x
�SNf�vN �x� t��� � ��

Multiplying this by vN �x� t� and integrating over the ���period� we obtain that
vN�being orthogonal to �

�x
��I � SN�f�vN �x� t���� satises

�

�

d

dt

Z ��

�

v�N �x� t�dx � �
Z ��

�

vN �x� t�
�

�x
�f�vN �x� t���dx

� �
Z vN �x
t�

uf ��u�dujx���x�� � ��

Thus� the total quadratic entropy� ��u� � �
�
u�� is globally conserved in time

�

�

Z ��

�

v�N �x� t�dx �
�

�

Z ��

�

v�N �x� ��dx� �������

which in turn yields the existence of a weak L��x��limit�
u�x� t� � w limN�� vN �x� t�� Yet� u�x� t� cannot be the entropy solution of a non�
linear equation ������� where f ����� �� �� Otherwise� SNf�vN �x� t�� and therefore
f�vN �x� t�� should tend� in the weak distributional sense� to f�u�x� t�� consequently�
since f�u� is nonlinear� u�x� t� � s limN�� vN �x� t�� which by ������� should satisfy
�
�

R ��
�

u��x� t�dx � �
�

R ��
�

u��x� ��dx� But this is incompatible with the �quadratic�
entropy inequality if u�x� t� contains shock discontinuities�

Our second example is a discrete one�

Counterexample �� We consider the ���periodic conservation law

�u

�t
!

��eu�

�x
� ��

Expressed in terms of the trigonometric interpolant at the equidistant gridpoints
x� � ���

�N��
� the corresponding �dospectral approximation reads

�

�t
�vN �x� t�� !

�

�x
��Ne

vN �x
t�� � ��

�		



Multiply this by �Ne
vN �x
t� and integrate over the ���period	 since the trape�

zoidal rule is exact with integration of the �N �trigonometric polynomial obtained
from the second brackets� we have

d

dt

�NX
���

evN �x� 
t��x � �
Z ��

�

�

�x
�
�

�
��Ne

vN �x
t����dx � ��

Thus� the total exponential entropy� ��u� � eu� is globally conserved in time

�NX
���

��vN �x�� t���x �

�NX
���

��vN �x�� ����x� ��u� � eu� �������

Hence� if vN �x� t� converges �even weakly� to a discontinuous weak solution� u�x� t��
then �Ne

vN �x
t� tends �at least weakly� to eu�x
t�� Consequently� ������� would

imply the global entropy conservation of
R ��
�

eu�x
t�dx in time� which rules out the
possibility of u�x� t� being the unique entropy solution�

In this chapter we extend the linear convergence theory into the weak regime�
The extension is based on the usual two ingredients of stability and consistency� On
the one hand� the counterexamples mentioned above show that one must strengthen
the linearized L��stability requirement� We assume that the approximate solutions
are Lip��stable in the sense that they satisfy a one�sided Lipschitz condition� in
agreement with Oleinik�s E�condition for the entropy solution� On the other hand�
the lack of smoothness requires to weaken the consistency requirement� which is
measured here in the Lip���semi�norm� As a guiding example� let us consider the
usual viscosity approximation� v�� with �truncation error� �v�xx� Localized to the

neighborhood of shock discontinuities we nd that k�v�xxkLp
loc

� O��
��p
p � which

rules out the Lp norms as possible measures for the a priori error estimate ������� 
instead� the weak Lip���semi�norm yields a truncation error of size k�v�xxkLip� �
O��� which agrees with the fact that � is the smallest scale present in a viscosity
approximation in this case�

In x��� we prove for Lip��stable approximate solutions� that their Lip��conver�
gence rate to the entropy solution is of the same order as their Lip��consistency�
Thus� we show that under the assumption of Lip��stability� the basic Lax�Richtmyer
a priori error bound ������� still holds when we replace the L� with the weaker Lip�

norm�
Our Lip��convergence rate estimates could be converted into stronger Lp con�

vergence rate estimates� In particular� we recover the usual L��convergence rate
of order one half� and we obtain new pointwise error estimates which depend on
the local smoothness of the entropy solution� In fact� though the L��convergence
rate of order O�

p
�� is optimal� in practice one obtains an L��rate of order O����

when there are nitely many shock discontinuities� ��������� �and these are the only
solutions that can be computed(�� In this case� we can use our Lip� theory to derive
local error estimates which improve the L��result	 using a bootstrap argument we
show in ����� that the Lip��stable approximate solutions satisfy an O��� pointwise
error estimate for all but nitely manyO����neighborhoods of shock discontinuities�

We now turn to the multidimensional setup� Kuznetsov ���� was the rst to
provide error estimates for scalar approximate solutions� fv�g� for both � the one�

�	�



and multi�dimensional setups� Subsequently� many authors have used Kuznetsov�s
approach to prove convergence ! L��error estimates we refer for the detailed treat�
ments of ����� ����� �������� � A more recent treatment of ��� employs the entropy
dissipation estimate ������� which in turn� by Kuznetsov arguments� yields an L��

convergence rate estimate of order ��x�
���
� �independently of the BV bound��

Kuznetsov�s approach employs a regularized version of Kru$zkov�s entropy pairs
in ������ ���v� c� � jv� � cj� F ��v� c� � sgn�v� � c��A�v�� � A�c��� Here� one
measures by how much the entropy dissipation rate of fv�g fails to satisfy the
entropy inequality ������ with Kru$zkov�s regularized entropies� Following the general
recent convergence result of ���� we consider a family of approximate solutions� fv�g�
which satises

�tjv� � cj!rx � fsgn�v� � c��A�v���A�c��g � �tR��t� x� !rx �R�t� x��
�������

with

kR��t� x�kMx�t ! kR�x� t�kMt�x � Const � �� �������

Then� the convergence rate proof proceeds along the lines of Theorem ���	 Using the
key property of symmetry of the regularized entropy pairs� ��� 	� ���� F

� 	� ��F ��
one nds

R
x
���v� u�dx � Const����� In addition� there is a regularization error�

k��� �kL��x�� of size O���� and an L� error estimate of order O�
p
�� follows �under

reasonable assumptions on the L��initial error w�r�t� BV data�� consult ���

kv���� t�� u��� t�kL�
loc�x�

� Const�
p
��

Observe that this error estimate� based on ��������������� is the multidimen�
sional analogue of our Lip��consistency requirement� In general� Kuznetsov ap�
proach makes a stronger requirement of approximate entropy inequalities �i�e�� in
terms of all of Kru$zkov�s pairs�� and in return� ones obtains convergence results
which apply to general� non�convex equations� The lectures by B� Cockburn pro�
vide a detailed account of Kuznetsov�s L��convergence theory� In this chapter we
therefore focus our attention on the Lip��convergence theory mentioned above� Its
multidimensional extension deals with convex Hamilton�Jacobi equations �rather
than conservation laws�� consult x����

In x��� we implement these error estimates for a variety of approximate solu�
tions� The examples we discuss include

� Regularized Chapman�Enskog approximations ���� 

� Finite�di�erence E�schemes ���� 

� Godunov�type schemes ���� 

� Glimm�s scheme ���� 

� Spectral viscosity approximations� ����

Other examples dealing with ��� systems with and without sti� relaxation coupling
terms could be found in ����������

�	�




�� Approximate solutions

We study approximate solutions of the scalar convex conservation law

�

�t
u�x� t� !

�

�x
f�u�x� t�� � �� f �� � � � �� �������

with compactly supported initial conditions prescribed at t � ��

u�x� t � �� � u��x�� �������

Let fv��x� t�g��� be a family of approximate solutions of the conservation law
�������� ������� in the following sense�

De�nition ��� A� We say that fv��x� t�g��� are conservative solutions ifZ
x

v��x� t�dx �

Z
x

u��x�dx� t � �� �������

B� We say that fv��x� t�g��� are Lip��consistent with the conservation law ��������
������� if the following estimates are fullled�	

�i� consistency with the initial conditions ��������

kv��x� ��� u��x�kLip� � K� � � �������

�ii� consistency with the conservation law ��������

kv�t �x� t� ! f�v��x� t��xkLip��x
��
T � � KT � �� �������

We are interested in the convergence rate of the approximate solutions� v��x� t��
as their small parameter � � �� This requires an appropriate stability denition
for such approximate solutions� Recall that the entropy solution of the nonlinear
conservation law �������� ������� satises the a priori estimate ������

ku��� t�kLip� �
�

ku�k��Lip� ! �t
� t � �� �������

The case ku�kLip� � � is included in �������� and it corresponds to the exact
� t�� decay rate of an initial rarefaction�

De�nition ��� We say that fv��x� t�g��� are Lip��stable if there exists a constant
� � � �independent of t and �� such that the following estimate� analogous to
�������� is fullled	

kv���� t�kLip� �
�

kv���� ��k��
Lip�

! �t
� t � �� �������

� We letk�kLip� k�kLip�andk�kLip� denote respectively� esssupx��y
����x����y�

x�y
���

esssupx��y
�
��x����y�

x�y
�
�

and sup�
��� ���
��
k�kLip � where ,�� �

R
supp�

��

�	�



Remarks�

�� The case of an initial rarefaction subject to the quadratic �ux f�u� � �
�
u�

demonstrates that the a priori decay estimate of the exact entropy solution in
������� is sharp� A comparison of ������� with ������� shows that a necessary
condition for the convergence of fv�g��� is

� � � � �� �������

for otherwise� the decay rate of fv���� t�g �and hence of its � � limit� would
be faster than that of the exact entropy solution�

�� The case � � � in ������� corresponds to a strict Lip��stability in the sense
that kv���� t�kLip� decays in time� in agreement with the decay of rarefactions
indicated in ��������

�� In general� any a priori bound

kv���� t�kLip� � ConstT 	�� � � t � T� �������

is a su�cient stability condition for the convergence results discussed below�
In particular� we allow for � � � in �������� as long as the approximate initial
conditions are Lip��bounded� We remark that the restriction of Lip��bounded
initial data is indeed necessary for convergence� in view of the counterexample
of Roe�s scheme discussed in remark ��� in x���� Unless stated otherwise� we
therefore restrict our attention to the class of Lip��bounded �i�e�� rarefaction�
free� initial conditions� where

L�
� 	� max�ku�kLip� � kv���� ��kLip� � 	�� �������

�� Finally� we remark that in case of strict Lip��stability� i�e�� in case �������
holds with � � �� then one can remove this restriction of Lip��bounded initial
data and our convergence results can be extended to include general L�loc�initial
conditions� initial rarefaction are included� The discussion of this case could be
found in ����� and it leads to similar error estimates discussed in this chapter�
with � being replaced by � log����


�� Convergence rate estimates

Convex conservation laws
We begin with the following theorem which is at the heart of matter�

Theorem ��� A� Let fv��x� t�g��� be a family of conservative� Lip��stable ap�
proximate solutions of the convex conservation law �������������� subject to the
Lip�� bounded initial conditions ������� Then the following error estimate holds

kv���� T �� u��� T �kLip� � CT
�
kv���� ��� u����kLip� ! kv�t ! f�v��xkLip��x
��
T �

�
�

�������

where

CT � �� ! �L�
� T ��� � 	�

max f ��

�
� ��

�	�



B� In particular� if the family fv��x� t�g��� is also Lip��consistent of order O����
i�e�� ������������� hold� then v��x� t� converges to the entropy solution u�x� t� and
the following convergence rate estimate holds

kv���� T �� u��� T �kLip� �MT � �� MT 	� �K� ! KT ��� ! �L�
� T ��� �������

Proof� We proceed along the lines of �������� The di�erence� e��x� t� 	� v��x� t� �
u�x� t�� satises the error equation

�

�t
e��x� t� !

�

�x
�a��x� t�e

��x� t�� � F ��x� t�� �������

where a��x� t� stands for the mean�value

a��x� t� �

Z �

���

a�
v��x� t� ! ��� 
�u�x� t��d
� a��� � f �����

and F ��x� t� is the truncation error�

F ��x� t� 	� v�t �x� t� ! f�v��x� t��x�

Given an arbitrary ��x��W �
�
� � we let f���x� t�g��t�T denote the solution of

the backward transport equation

��t �x� t� ! a��x� t��
�
x�x� t� � �� t � T� �������

corresponding to the endvalues� ��x�� prescribed at t � T �

���x� T � � ��x��

Here� the following a priori estimate holds ���� Theorem ����

k����� t�kLip � exp�

Z T

t

ka���� � �kLip�d�� � k��x�kLip� � � t � T� �������

The Lip��stability of the entropy solution ������� and its approximate solutions
in �������� provide us with the one�sided Lipschitz upper�bound required on the
right�hand side of �������	

ka���� ��kLip� �
max f ��

�
�kv���� ��kLip� ! ku��� � �kLip� � � max f ��

�L�
� ��� ! ��

� �������

Equipped with �������� ������� we conclude

k����� t�kLip � �� ! �L�
� T ��

�� ! �L�
� t�

�
k��x�kLip �

� CT k��x�kLip� � � t � T� CT 	� �� ! �L�
� T ���

�������

�	�



and employing ������� we also have

k���x� ��kLip��
T  � jaj� max
��t�T

k����� t�kLip�x� �

� jaj�CT k��x�kLip� jaj� 	� max jf �j�
�������

Of course� ������� is just the adjoint problem of the error equation ������� which
gives us

�e���� T �� ����� � �e���� ��� ����� ��� ! �F ��x� t�� ���x� t��L��x
��
T �� �������

Conservation implies that ,e�� �
R
e��x� ��dx � � and by ������� we nd

j�e���� ��� ����� ���j � ke���� ��kLip�k����� ��kLip �

� �� ! �L�
� T ��ke���� ��kLip� � k��x�kLip 

similarly� conservation implies that ,F �
� �

R
x
��
T 

F ��x� t�dxdt � � and by

��������������� we nd

j�F ��x� t�� ���x� t��L��x
��
T �j � kF ��x� t�kLip��x
��
T �k���x� t�kLip�x
��
T � �

� �� ! jaj��CT kF ��x� t�kLip��x
��
T �k��x�kLip�
�������

The error estimate ������� follows from the last two estimates together with ��������

The Lip��convergence rate estimate ������� can be extended to more familiar
W s
p

loc �convergence rate estimates� The rest of this section is devoted to three corol�
laries which summarize these extensions�

We begin by noting that the conservation and Lip��stability of v���� t� imply
that v���� T � � and consequently that the error� v���� T � � u��� T �� have bounded
variation�

kv���� T �� u��� T �kBV � Const
�

�L�
� ��� ! �T

� �������

We note in passing that the constant on the right of ������� depends on the �nite
size of the support of the error�
We can now interpolate between the BV�bound ������� and the Lip��error estimate
�������� to conclude the following�

Corollary ��� Let fv��x� t�g��� be a family of conservative� Lip��consistent and
Lip��stable approximate solutions of the conservation law ������� ������� with
Lip��bounded initial conditions ������� Then the following convergence rate esti�
mates hold 
p � �

kv���� T �� u��� T �kWs�p � ConstT � �
��sp
�p � �� � s � �

p
� �������

�	�



The error estimate ������� with �s� p� � ��� �� yields L� convergence rate of order
O�
p
��� which is familiar from the setup of monotone di�erence approximations

����������� Of course� uniform convergence �which corresponds to �s� p� � ������
fails in this case� due to the possible presence of shock discontinuities in the entropy
solution u��� t�� Instead� one seeks pointwise convergence away from the singular
support of u��� t�� To this end� we employ a C�

� ���� ���unit mass mollier of the
form ���x� � �

�
��x

�
�� The error estimate ������� asserts that

j�v���� T � � ����x�� �u��� T � � ����x�j �MT
�

��
kd�
dx
kL� �

Moreover� if ��x� is chosen so thatZ
xk��x�dx � � for k � �� �� � � � � r � �� �������

then a straightforward error estimate based on Taylor�s expansion yields

j�u��� T � � ����x�� u�x� T �j � �r

r(
k�kL� � ju�r�jloc�

where ju�r�jloc measures the degree of local smoothness of u��� t��

ju�r�jloc 	� k �r

�xr
u��� T �kL�

loc
�x��
supp���

The last two inequalities �with � � �
�

r�� � imply

Corollary ��� Let fv��x� t�g��� be a family of conservative� Lip��consistent and
Lip��stable approximate solutions of the conservation law ������� ������� with
Lip��bounded initial conditions ������� Then� for any r�order molli�er ���x� �
�
�
��x

�
� satisfying ������� the following convergence rate estimate holds

j�v���� T � � ����x�� u�x� T �j � Const�� !
ju�r�jloc

r(
� � � r

r�� � �������

Corollary ��� shows that by post�processing the approximate solutions v���� t��
we are able to recover the pointwise values of u�x� t� with an error as close to � as
the local smoothness of u��� t� permits� A similar treatment enables the recovery of
the derivatives of u�x� t� as well� consult ���� x���

The particular case r � � in �������� deserves special attention� In this case�
post�processing of the approximate solution with arbitrary C�

� �unit mass mollier
��x�� gives us

j�v���� T � � ����x�� u�x� T �j � Const � �� ! jux��� T �jloc� � �
p
�� �������

We claim that the pointwise convergence rate of order O� �
p
�� indicated in

������� holds even without post�processing of the approximate solution� Indeed�
let us consider the di�erence

v��x� T �� �v���� T � � ����x� �

Z
y

�v��x� T �� v��x� y� T �����y�dy �

�

Z
y


v��x� T �� v��x� y� T �

�y

�
� �y

�
��
y

�
�dy�

�	�



By choosing a positive C�
� �unit mass mollier ��x� supported on ���� �� then� thanks

to the Lip��stability condition �������� the integrand on the right does not exceed
Const � �� and hence

v��x� T �� �v���� T � � ����x� � Const � � � �������

Similarly� a di�erent choice of a positive C�
� �unit mass mollier ��x� supported on

��� �� leads to

v��x� T �� �v���� T � � ����x� � Const � �� �������

Each of the last two inequalities �with � � �
p
�� together with ������� show that the

approximate solution itself converges with an O� �
p
���rate� as asserted� We summa�

rize what we have shown by stating the following�

Corollary ��� Let fv��x� t�g��� be a family of conservative� Lip��consistent and
Lip��stable approximate solutions of the conservation law ������� ������� with
Lip��bounded initial conditions ������� Then the following convergence rate esti�
mate holds	

jv��x� T �� u�x� T �j � Cx � �
p
�� Cx � jux��� T �jL��x� �p�
x� �p��� �������

The above derivation of pointwise error estimates applies in more general situa�
tions� Consider� for example� a family of approximate solutions� fv��x� t�g��� which
satises the stronger L� error estimate of order� say� O����

j�v���� T �� u��� T �� �����j � Cx � �k�kL� � �������

Then our previous arguments show how to post�process v���� T � in order to recover
the pointwise values of the entropy solution� u�x� T � with an error as close to � as
the local smoothness of u��� T � permits� In particular� using ������� with a positive
C�
� �unit mass mollier� ���x� � �

�
��x

�
� we obtain

j�v���� T � � ����x�� �u��� T � � ����x�j � Cx � �
�
k�kL� � �������

Using this together with

j�u��� T � � ����x�� u�x� T �j � �k�kL� � kux��� T �kL�
loc

�x��
supp��� �������

we nd �with � � p��

j�v���� T � � ����x�� u�x� T �j � ConstT �� ! jux��� T �jloc�p�� �������

If the approximate solutions fv��x� t�g��� are also Lip��stable� then we may
augment ������� with ��������������� to conclude

Corollary ��� Assume that fv��x� t�g is a family of Lip� stable approximate so�
lutions with global L��convergence rate of order O���� ������� Then the following
local pointwise error estimate holds

jv��x� T �� u�x� T �j � Cx � p�� Cx � jux��� T �jL��x�p
x�p��

�	�



Remarks�

�� The usual L��rate of order � � p� leads to ����

jv��x� T �� u�x� T �j � Cx � �
p
�� Cx � jux��� T �jL��x� �p�
x� �p��� �������

�� In case u��� t� has nitely many shocks� ����� one obtain an L��rate of order
� � �� ����� and hence we nd a local error of order

p
�

jv��x� T �� u�x� T �j � Cx �
p
�� Cx � jux��� T �jL��x�p�
x�p��� �������

�� Finally� in ���� we improved the estimate ������� replacing
p
� by �� Thus� we

obtain an optimal pointwise error estimate of order O��� in all but nitely
many neighborhoods of shock discontinuities of width O����

Convex Hamilton�Jacobi equations
In this section we brie�y comment on the multidimensioal generalization of the Lip��
convergence theory outlined above� to convex Hamilton�Jacobi �HJ� equations� We
consider the multidimensional Hamilton�Jacobi �HJ� equation

�tu ! H�rxu� � �� �t� x� � R� �Rd� �������

with convex Hamiltonian� H �� � �� Its unique viscosity solution is identied by
the one�sided concavity condition� D�

xu � Const�� consult ����� ����� Given a fam�
ily of approximate HJ solutions� fv�g� we make the analogous one�sided stability
requirement of

� Demi�concave stability� The family fv�g is demi�concave stable if

D�
xv

� � Const� �������

We then have the following�

Theorem ��� ����� Assume fv��g and fv��g are two demi�concave stable families
of approximate solutions� Then

kv���t� ��� v���t� ��kL��x� � Const�kv����� ��� v����� ��kL��x� !

! Const�

�X
j��

k�tv�j ! H�rxv
�
j �kL��t
x�� �������

If we let v�� � v�� v�� � v� denote two demi�concave viscosity solutions� then �������
is an L��stability statement �compared with the usual L��stability statements of
viscosity solutions� ����� If we let fv��g � fv�g denote a given family of demi�concave
approximate HJ solutions� and let v�� equals the exact viscosity solution u� then
������� yields the L��error estimate

kv���� t�� u��� t�kL��x� � Const�k�tv� ! H�rxv
��kL��x
t� � O���� �������

This corresponds to the Lip��error estimate of ������ with �s� p� � ���� ��� One can

then interpolate from ������� an Lp�error estimates of order O��
��p
�p �� For a general

L��convergence theory for approximate solutions to HJ equations we refer to ���
and the references therein�

�	�




�
 Examples

Regularized Chapman�Enskog expansion
Of course� the usual viscous approximation

�

�t
�v��x� t�� !

�

�x
�f�v��x� t��� � �

��

�x�
�Q�v��x� t���� �Q� � �� �������

is the canonical example for a family of approximate solutions whose convergence
rate could be analyzed in terms of our Lip� theory outlined above� Here� we con�
centrate on yet another� more intricate regularization of the inviscid equations of
the form

v�t ! f�v��x �


��k�

� ! m���k�
,v��k�

��
�

or equivalently�

v�t ! f�v��x � � �

m��
�u�Qm� � u� � Q 	�

�

��
e�jxj�� �������

Rosenau ���� has proposed this type of equation as a model for his regularized
version of the Chapman�Enskog expansion for hydrodynamics� The operator on
the right side looks like the usual viscosity term �v�xx at low wave�numbers k� while
for higher wave numbers it is intended to model a bounded approximation of a
linearized collision operator� thereby avoiding the articial instabilities that occur
when the Chapman�Enskog expansion for such an operator is truncated after a
nite number of terms �����

We shall study the convergence rate of v� to the inviscid solution� along the
lines of ����� It should be pointed out that the solution of ������� does not admit
all the entropy inequalities� except for the quadratic one thus� the question of
convergence in this case� is not easily answered in terms of the usual L��Kuznetsov
theory� Instead� we use the Lip� theory outlined in x���� To this end� we rst turn
to show that the nonlinear Regularized Chapman�Enskog �RCE� equation �������
satises Oleinik�s E�entropy condition�

Theorem ��� Assume f
�� � � � �� Then the following a priori estimate holds

jjv��t�jjLip� � �

jjv����jj��
Lip�

! �t
� t � �� �������

Remark ��� The inequality ������� implies that the positive�variation and hence
the total�variation of v��t� decays in time� Furthermore� this proves the zero mean�
free�path convergence to the entropy solution of ������� for any L�loc�initial data
u�

��	



Proof� We add the articial viscosity term �uxx to regularize �������� obtaining

�tv
�
� ! �xf�v��� � � �

m��
fv�� �Qm� � v��g ! ���xv

�
� � �������

Di�erentiation of ������� yields for w � �xv
�
� �

�tw ! f
�

�u����xw ! f
��

�u���w
� �� � �

m��
fw �Qm� � wg! ���xw�

Hence� since f
��

� � � �� it follows that W �t� � maxxw�t� is governed by the
di�erential inequality

%W �t� ! �W ��t� � �

m��
fW �t��Qm� �Wg � �

and ������� follows by letting � � ��

Theorem ��� shows that solutions of the RCE equation ������� are Lip��stable�
Moreover� ������� implies that the Lip��size of their truncation if of order O���� for

jj�tv� ! �xf�v��jjLip� � �jjQm� � �xv�jjL� � �jjQm�jjL� jjv��t�jjBV � �jju����jjBV �

Using our main result we conclude that the Lip�� convergence rate of the RCE
solutions to the corresponding entropy solution is also of order O����

Corollary ��� Assume that f
�� � � � �� and let v� be the unique RCE solution

of ������ subject to C� initial conditions v���� � u���� then v� converges to the
unique entropy solution of ������ and the following error estimates hold

jjv��t�� u�t�jjWs�p � Const � � ��sp
�p � �� � s � �

p
� �������

Finite�Di�erence approximations
We want to solve the conservation law ��������������� by di�erence approximations�
To this end we use a grid �x� 	� ��x� tn 	� n�t� with a xed mesh�ratio  � �t

�x
�

Const� The approximate solution at these grid points� vn� � v�x�� t
n�� is determined

by a conservative di�erence approximation which takes the following viscosity form�
e�g�� �����

vn��� � vn� � 

�
�f�vn����� f�vn����� !

�

�
�Qn

�� �
�
�vn�� �

�
�Qn

�� �
�
�vn�� �

�
�� �������

and is subject to Lip��bounded initial conditions�

v�� �
�

�x

Z x
���

�

x
�� �

�

u��
�d
� L�
� � ku�kLip� 	�� �������

� We use the usual notations for forward and backward di�erences�
��v�� �

�
	� ��v��� � v���

���



Let v��x� t� be the piecewise linear interpolant of our grid solution� v��x� � t
n� � vn� �

depending on the small discretization parameter � � �x � �� It is given by

v�x�x� t� �
X
j
m

vmj "mj �x� t�� "mj �x� t� 	� "j�x�"m�t��

where "j�x� and "m�t� denote the usual "hat� functions�

"j�x� �
�

�x
min�x� xj��� xj�� � x��� "m�t� �

�

�t
min�t� tm��� tm�� � t���

In ���� we show that these schemes are Lip��consistent of order O��x�� thus arriving
at

Theorem ��� Assume that the di
erence approximation ������������� is Lip��
stable in the sense that the following one�sided Lipschitz condition is ful�lled	

max
�

��vn
�� �

�
��

�x
� �

�L�
� ��� ! �tn

� � � tn � T� �������

Then the following error estimates hold	

kv�x��� T �� u��� T �kWs�p � CT � ��x�
��sp
�p � �� � s � �

p
� �������

jv�x�x� T �� u�x� T �j � Cx � max
j��xj� �p

�x

jux�
� T �j � �
p
�x� �������

The following rst order accurate schemes �identied in a decreasing order ac�
cording to their numerical viscosity coe�cient� Q�� �

�
� Qn

�� �
�

�� are frequently

referred to in the literature�

Lax� Friedrichs 	 QLxF
�� �

�
� �� �������

Engquist�Osher 	 QEO
�� �

�
�



vn��� � vn�

Z v���

v�

jf ��v�jdv� �������

Godunov 	 QG
�� �

�
� max

v


f�vn���� ! f�vn� �� �f�v�

vn��� � vn�

�
� �������

Roe 	 QR
�� �

�
� j

�fn
�� �

�

�vn
�� �

�

j� �������

In ���� we prove the Lip� stability of these schemes� and together with their Lip�

consistency �of order O��x�� we arrive at

Corollary �� Consider the conservation law ������� ������ with Lip��bounded
initial data ������� Then the Roe� Godunov� Engquist�Osher� and Lax�Friedrichs
di
erence approximations ������������� with discrete initial data ������ con�
verge� and their piecewise�linear interpolants v�x�x� t�� satisfy the convergence rate
estimates ������� �������

���



Remark ��� The Lip��stability ������� of Roe scheme with � � � �no decay��
was proved in ���� Note that the assumption of Lip��bounded initial conditions is
essential for convergence to the entropy solution in this case� in view of the discrete
steady�state solution� v�� � sgn��! �

�
�� which shows that convergence of Roe scheme

to the correct entropy rarefaction fails due to the fact that the initial data are not
Lip��bounded�

Godunov type schemes
Godunov type schemes form a special class of transport projection methods for
the approximate solution of nonlinear hyperbolic conservation laws� This class of
schemes takes the following form	

v�x��� t� �

���Tft�tn��gv
�x��� tn���� tn�� 	 t 	 tn

P �fInj g�v�x��� tn � ��� t � tn � n�t
�������

where the initialization step is	

v�x��� t� � �� � P �fI�j g�u���� � �������

These schemes are composed of the following four ingredients	
�i� The possibly variable size grid cells� Inj � �xn

j� �
�
� xn

j� �
�

�� where the grid is

regular in the sense that	

�x � �xmin � jInj j � �xmax  
�xmax
�xmin

� Const�  �������

�ii� A conservative piecewise polynomial grid projection� P � P �fInj g��Z
x

Pw�x�dx �

Z
x

w�x�dx  �������

�iii� The exact entropy solution operator associated with �������� T � Tt 
�iv� The time step �t� which is restricted by the CFL condition	

max
x
t
jf ��v�x�x� t��j � � �  �

�t

�x
� �������

As an example we recall here the subclass of Godunov�type schemes based on
piecewise�polynomial projections� which was discussed already in the �short guide�
introduced in Lecture II�

To study the convergence rate of this class of schemes� we are required to ver�
ify the Lip��consistency and Lip��stability of the scheme in question� We begin
by reducing the question of Lip��consistency to the level of a mere approximation
problem� namely� measuring in Lip��semi�norm the distance between the exact so�
lution and its grid projection� Thus� our rst theorem below enables us to avoid
the delicate bookkeeping of error accumulation due to the dynamic transport part
of the scheme�

���



Theorem ��� �Lip��consistency� The Godunov type approximation �������������
satis�es the following truncation error estimate	

kv�xt ! f�v�x�xkLip��x
��
T � � T

�t
max

��tn�T
k�P � I�v�x��� tn � ��kLip� �������

Remark ��� We emphasize that this theorem applies to both xed and variable
grid schemes�

Proof� Let N denote the number of time steps in ��� T �� i�e�

T � tN � N�t � �������

Then for every � � C�
� ��� ��� T ��

�v�xt ! f�v�x�x� ��x
t �

NX
n��

Z tn

tn��

Z
x

v�xt �dxdt !

Z tn

tn��

Z
x

f�v�x�x�dxdt

�
�

Integration by parts gives that

�v�xt ! f�v�x�x� ��x
t �

NX
n��


�v�x� ��

���tn
tn��

�
Z tn

tn��

�
�v�x� �t� ! �f�v�x�� �x�

�
dt

�
�

�������

But since v�x is a weak solution in the strip � � �tn��� tn�� as denition �������
implies� thenZ tn

tn��

�
�v�x� �t� ! �f�v�x�� �x�

�
dt � �v�x� ��

���tn��
tn����

� �������

Therefore� by ������� and ��������

�v�xt ! f�v�x�x� ��x
t �

NX
n��


�v�x� ��

���tn
tn��

� �v�x� ��
���tn��
tn����

�
�

and since� by �������� v�x��� tn�� ! �� � v�x��� tn���� we have that

�v�xt ! f�v�x�x� ��x
t �

NX
n��

�v�x� ��
���tn
tn��

�

NX
n��

��P � I�v�x��� tn � ��� ���� tn�� �

Recall the conservation of P asserted in ��������

Z
�P � I�v�xdx � �� Therefore�

using the denition of the Lip��seminorm� together with �������� we get

j�v�xt ! f�v�x�x� ��x
tj � T

�t
max

��n�N
k�P � I�v�x��� tn � ��kLip�k���� tn�kLip �

Dividing by k��x� t�kLip and taking the supremum over �� we arrive at ��������

���



Next� we turn to the question of Lip��stability� The standard Lip��seminorm�
k�kLip� � is inappropriate measure for the size of discontinuous piecewise polynomial
functions� since increasing jumps � even on the acceptable scale of the gridsize� are
Lip��unbounded� Instead� we replace it by its discrete analogue � k�k�ip� � requiring

kv�x��� tn�k�ip� 	� max
x

�
v�x�x ! �x� tn�� v�x�x� tn�

�x

��

� Const� �������

The discrete !ip� stability is weaker than Lip� stability� yet� as we shall show
below� it will su�ce for our convergence rate estimates to hold� To see this� we
introduce a compactly supported non�negative unit mass mollier�

���x� �
�

�
��

x

�
� �

Z
x

���x�dx �

Z
x

��x�dx � � � �������

The discrete !ip� stability is related to the stronger Lip� bound on the molli�ed
solution� The following lemma shows that Lip��consistency of order O��x� remains
invariant under a mollication with ��� � � O��x�� Thus� O��x��mollication
does not sacrice accuracy yet we have the advantage of using the weaker discrete
!ip� stability�

Lemma ��� Assume v�x�x� t� has a bounded variation and is Lip��consistent with
������ of order O��x��

kF�x�x� t�kLip� � O��x� � F�x�x� t� � v�xt ! f�v�x�x � �������

Then v�x
� � �� � v�x is Lip��consistent with ������ of order O��x� !O����

We omit the straightforward proof �which could be found in ������ Finally� we
combine Theorem ��� and Lemma ��� to achieve our main convergence rate estimate
for Godunov type schemes�

Theorem �� �Convergence rate estimates� Assume that the Godunov type
approximation ������������� is !ip��stable� ������� and Lip��consistent in the
sense that

k�P � I�wkLip� � O��x��kwkBV � �������

Then the following error estimates hold	

kv�x��� t�� u��� t�kWs�p � O��x
��sp
�p ���� � s � �

p
� �������

Proof� Let us denote 'v�x��� t� � ��x � v�x��� t�� where ��x is the dilated mollier
of

��x� �

�
�� jxj � �

�

�� jxj � �
�

� �������

���



This choice of mollier satises the Lip��error estimate

k��x � w � wkLip� � O��x��kwkBV � �������

We show that 'v�x satises the Lip��stability condition �������� and it is Lip��
consistent of order O��x��

We start with the Lip��stability question� The denition of the discrete !ip��
seminorm� �������� implies that k'v�x��� tn�kLip� � kv�x��� tn�k�ip� � Since v�x is
assumed to be discrete !ip��stable� we conclude that at each time level tn we have

k'v�x��� tn�kLip� � Dn � C � �������

This� together with the fact that the intermediate exact solution operator decreases
the Lip��seminorm� ������� imply Lip��boundedness for all t � �	

k'v�x��� t�kLip� � Const� 
t � � � �������

Namely� the mollied approximation 'v�x is Lip��stable�

We note in passing that v�x��� t�� being compactly supported and Lip��bounded�
has bounded variation� Turning to the question of Lip��consistency we therefore con�
clude from assumption ������� together with the truncation error estimate ��������
that v�x is Lip��consistent with ������� of order O��x�� and hence by lemma ����
so does 'v�x�

k'v�xt ! f�'v�x�xk � O��x� �

Furthermore� 'v�x is also Lip��consistent with the initial condition �������� since by
�������� ������� and �������	

k'v�x��� ��� u��� ��kLip� � k'v�x��� ��� v�x��� ��kLip� ! kv�x��� ��� u����kLip�
� � O��x���

Therefore� Theorem ��� holds in particular ������� tells us that

k'v�x��� T �� u��� T �kLip� � O��x� � �������

In addition� we have by ��������

k'v�x��� T �� v�x��� T �kLip� � O��x�� � �������

Combining ������� and ������� we end up with

kv�x��� T �� u��� T �kLip� � O��x� � �������

The Lip��error estimate ������� may now be interpolated into the W s
p�error esti�
mates ��������

Examples of the rst�order Godunov and Engquist�Osher schemes as well as
the second�order �upwind� MUSCL and �central� Nessyahu�Tadmor schemes are
discussed in �����

���



Glimm scheme
We recall the construction of Glimm approximate solution for the conservation law
�������� see �������� We let v�x� t� be the entropy solution of ������� in the slab

tn � t 	 tn��� n � �� subject to piecewise constant data v�x� tn� �
X
�

vn� ���x��

To proceed in time� the solution is extended �in a staggered fashion� with a jump
discontinuity across the lines tn��� n � �� where v�x� tn��� takes the piecewise
constant values

v�x� tn��� �
X
�

vn��
�� �

�

��� �
�

�x�� vn��
�� �

�

� v�x�� �
�

! rn�x� tn�� � ��� �������

Notice that in each slab� v�x� t� consists of successive noninteracting Riemann so�
lutions provided the CFL condition�  � max ja�u�j � �

�
is met� This denes the

Glimm approximate solution� v�x� t� � v��x� t�� depending on the mesh parame�
ters � � �x � �t� and the set of random variables frng� uniformly distributed
in �� �

�
� �
�
�� In the deterministic version of the Glimm scheme� Liu ���� employs

equidistributed rather than random sequence of numbers frng� We note that in
both versions� we make use of exactly one random or equidistributed choice per
time step �independently of the spatial cells�� as was rst advocated by Chorin ����

It follows that both versions of Glimm scheme share the Lip��stability estimate
�������� Indeed� since the solution of a scalar Riemann problem remains in the
convex hull of its initial data� we may express vn��

�� �
�

as �� � �n
�� �

�
�vn� ! �n

�� �
�
vn���

for some �n
�� �

�
� ��� ��� and hence

vn��
�� �

�

� vn��
�� �

�

� �n�� �
�
�vn�� �

�
! ��� �n�� �

�
��vn�� �

�
�

We now distinguish between two cases� If either �vn
�� �

�
or �vn

�� �
�

is negative� then

vn��
�� �

�

� vn��
�� �

�

� max��vn�� �
�
� �vn�� �

�
�� �������

Otherwise � when both �vn
�� �

�
and �vn

�� �
�

are positive� the two values of vn��
�� �

�

and vn��
�� �

�

are obtained as sampled values of two consecutive rarefaction waves� and

a straightforward computation shows that their di�erence satises �������� Thus in
either case� the Lip��stability ������� holds with � � ��

Although Glimm approximate solutions are conservative �on the average�� they
do not satisfy the conservation requirement �������� We therefore need to slightly
modify our previous convergence arguments in this case�

We rst recall the truncation error estimate for the deterministic version of
Glimm scheme ���� Theorem ������

v�xt ! f�v�x�x� ��x� t�
�
L��x
��
T �

�

� ConstT
�p

�xj ln�xj � k�kL� ! �x � k��x� t�kLip�x
��
T �
�
�

�������

Let ��x� t� � ��x�x� t� denote the solution of the adjoint error equation ��������
Applying ������� instead of ������� and arguing along the lines of Theorem ������ we

���



conclude that Glimm scheme is Lip��consistent �and hence has a Lip��convergence
rate� of order

p
�xj ln�xj�

j�e�x��� T �� �����j � ConstT
�p

�xj ln�xj � k�kL� ! �x � k��x�kLip
�
� �������

To obtain an L��convergence rate estimate we employ ������� with �� � � �
�
�
�
� 

�

�
yielding

j�e�x��� T �� ���j � ConstT

hp
�xj ln�xj! �x

�

i
k��x�kL� � �������

Using this estimate together with

�e���� T �� ������ ������� � �e���� T �� e����� T �� �� � Const � ke���� T �kBV � �k�kL� �

imply �for � � p�x�� the usual L��convergence rate of order O�
p

�xj ln�xj��
As noted in the closing remark of x���� the Lip��stability of Glimm�s approximate
solutions enables us to convert the L��type into pointwise convergence rate estimate�

We close this section by stating the following�

Theorem ��	 Consider the conservation law ������� ������ with su�ciently small
Lip��bounded initial data ������� Then the deterministic version of� Glimm ap�
proximate solution v�x�x� t� in ������ converges to the entropy solution u�x� t��
and the following convergence rate estimates hold	

kv�x��� T �� u��� T �kL� � ConstT �
p

�xj ln�xj� �������

jv�x�x� T �� u�x� T �j � Constx
T � �� ! max
j��xj� �p

�x

jux�
� T �j� � �
p

�xj ln�xj�

�������

Remarks�

�� A sharp L��error estimate of order O�
p
�x� can be found in ����� improving

the previous error estimates of �����
�� Theorem ��� hinges on the truncation error estimate ������� which assumes

initial data which su�ciently small variation ����� Extensions to strong initial
discontinuities for Glimm scheme and the front tracking method can be found
in ��� Theorems ��� and �����

The Spectral Viscosity method
We want to solve the ���periodic initial�value problem ��������������� by spectral

methods� To this end we use an N �trigonometric polynomial� vN �x� t� �
PN

k��N ,vk�t�eikx�
to approximate the spectral �or pseudospectral� projection of the exact entropy so�
lution� PNu� Starting with vN �x� �� � PNu��x�� the standard Fourier method reads�

�

�t
vN !

�

�x
PNf�vN � � �� �������

Together with one�s favorite ODE solver� ������� gives a fully discrete spectral
method for the approximate solution of ��������

���



Although the spectral method ������� is a spectrally accurate approximation of
the conservation law ������� in the sense that its local error does not exceed

k�I � PN �f�vN ��� t��kH�s � Const �N�skvNkL� � 
s � �� �������

the spectral solution� vN �x� t�� need not approximate the corresponding entropy
solution� u�x� t�� Indeed� the counterexamples in x��� show that the spectral ap�
proximation ������� lacks entropy dissipation� which is inconsistent with the en�
tropy condition �������� Consequently� the spectral approximation ������� supports
spurious Gibbs oscillations which prevent strong convergence to the exact solu�
tion of ������ To suppress these oscillations� without sacricing the overall spectral
accuracy� we consider instead the Spectral Viscosity �SV� approximation

�

�t
vN �x� t� !

�

�x
PNf�vN �x� t�� � �N

�

�x
QN � �

�x
vN �x� t�� �������

The left�hand side of ������� is the standard spectral approximation of �������� On
the right hand�side� it is augmented by spectral viscosity which consists of the follow�
ing three ingredients	 a vanishing viscosity amplitude of size �N � �� a viscosity�free
spectrum of size mN �� �� and a viscosity kernel� QN �x� t� �

PN

jkj�mN

,Qk�t�eikx

activated only on high wavenumbers jkj � mN � which can be conveniently imple�
mented in the Fourier space as

�N
�

�x
QN � �

�x
vN �x� t� � ��N

NX
jkj�mN

k� ,Qk�t�,vk�t�eikx�

We deal with real viscosity kernels QN�x� t� with increasing Fourier coe�cients�
,Qk � ,Qjkj� which satisfy

��
�
mN

jkj

��q

� ,Qk�t� � �� jkj � mN � for some xed q � �� ������q�

and we let the spectral viscosity parameters� ��N �mN�� lie in the range

�N � �

N� logN
� mN � N

�
�q � � 	 �� ������q�

We remark that this choice of spectral viscosity parameters is small enough to
retain the formal spectral accuracy of the overall approximation� since

k�N �

�x
QN � �

�x
vN ��� t�kH�s � Const �N� �s

�q kvN ��� t�kL� � 
s � �� �������

At the same time� it is su�ciently large to enforce the correct amount of entropy
dissipation that is missing otherwise� when either �N � � or mN � N � Indeed� it
was shown in �������������� that the SV approximation �������� ������q ��������q� has
a bounded entropy production in the sense that

�Nk �

�x
vN �x� t�k�L�

loc
�x
t� � Const� �������

and this together with an L��bound imply � by compensated compactness argu�
ments� that the SV approximation vN converges to the unique entropy solution

���



of �������� A detailed account on the SV method is outlined in Leture III of this
volume�

Observe that in the limit case q ��� the SV method �������� ������q��������q��
coincides with the usual viscosity approximation�

�

�t
v��x� t� !

�

�x
PNf�v��x� t�� � �N

��

�x�
v��x� t��

But of course� the spectral accuracy ������� is lost in this limit case�
The Lip��stability and Lip��consistency �of order O�N���� of the SV approxi�

mation were studies in ����� We thus arrive at

Theorem ��� �Convergence rate estimates� Consider the ���periodic nonlin�
ear conservation law ������ with Lip��initial�data� Then the SV approximation
������� �����q�������q� with q � �

�
converges to the entropy solution of ������

and the following error estimates hold for � 	 t� � 
t � T 	

kvN ��� t�� u��� t�kWs�p � ConstT �N� ��sp
�p

�
��� � s � �

p
 �������

jvN �x� t�� u�x� t�j � ConstT �N� �
� � � 	 t� � t � T  �������

Finally� any r�th order molli�er� ������� recovers the pointvalues of vN to the order
of

jvN �x� t� � �r � vN �x� t�j � Cr �N� r
r��

�� �������

Remarks�

�� Theorem ��� requires the initial data of the SV method� vN �x� ��� to be Lip��
bounded independently of N � Consequently� one might need to pre�process the
prescribed initial data u� unless they are smooth enough to begin with� The de
la Vallee Poussin pre�processing� for example� will guarantee this requirement
for arbitrary Lip��bounded initial data u��

�� The error estimates ��������������� are not uniform in time as t� � �� unless
the initial data are su�ciently smooth to guarantee the uniformity �in time �
of the Lip� bound� For arbitrary Lip��initial data� u�� an initial layer may be
formed� after which the spectral viscosity becomes e�ective and guarantees the
spectral decay of the discretization error�

�� According to ������� and �������� the pointwise convergence rate of the SV

solution in smooth regions of the entropy solution is of order � N� �
� � and by

post�processing the SV solution this convergence rate can be made arbitrarily
close to N��� In fact� numerical experiments reported in ���� show that by
post�processing the SV solution using the spectrally accurate mollier of �����

�r�x� � ���x�Dn�x�� n �
h
�
� �
r��

N

i
� we recover the pointwise values in smooth

regions of the entropy solution within spectral accuracy�
�� According to ������� with �s� p� � ��� ��� the SV approximation has an L��

convergence rate of order � N� �
� in agreement with ����� This correspond s to

the usual L��convergence rate of order �
�

for monotone di�erence approxima�
tions� ����������

��	
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� Kinetic Formulations and Regularity

Abstract� We discuss the kinetic formulation of nonlinear conservation laws and
related equations� a kinetic formulation which describes both the equation and the
entropy criterion� This formulation is a kinetic one� involving an additional variable
called velocity by analogy� We apply this formulation to derive� based upon the
velocity averaging lemmas� new compactness and regularity results� In particular�
we highlight the regularizing e�ect of nonlinear entropy solution operators� and we
quantify the gained regularity in terms of the nonlinearity� Finally� we show that
this kinetic formulation is in fact valid and meaningful for more general classes
of equations� including equations involving nonlinear second�order terms� and the
��� hyperbolic system of isentropic gas dynamics� in both Eulerian or Lagrangian
variables � � the so called �p�system���

��� Regularizing e�ect in one�space dimension

We consider the convex conservation law

�

�t
u�x� t� !

�

�x
A�u�x� t�� � �� A�� � � � �� �������

Starting with two values at the di�erent positions� u� � u�x�� t� and ur � u�xr� t��
we trace these values by backward characteristics� They impinge on the initial line
at x�� � x� � ta�u�� and x�r � xr � ta�ur�� respectively� Since the characteristics of
entropy solutions of convex conservation laws cannot intersect� one nds that the
ratio �x�r � x�����xr � x�� remains positive for all time� After rearrangement this
yields

a�u�xr� t��� a�u�x�� t��

xr � x�
� �

t
�

Thus we conclude that the velocity of a�u� satises the Ol$einik�s one�sided Lip
condition� a�u��� t��x � ��t� Thanks to the convexity of A� we obtain the Lip�

bound on u itself�

ux�x� t� � �

�t
� �������

We recall that Lip� bound ������� served as the cornerstone for the Lip� convergence
theory outlined in Lecture IV� Here we focus on the issue of it regularity� Granted
�������� it follows that the solution operator associated with convex conservation
laws� Tt� has a nonlinear regularizing e�ect� mapping

Tt 	 L�� � BV� t � �� �������

compact support of size L � jsuppu�j� one obtains jsuppu��� t�j � L ! Const�t�
The Lip� bound ������� then yields an upper bound on the positive variation�R
u�x �x� t�dx � Const� since the sum of the positive and negative variations is

bounded� Z
u�x �x� t� ! u�x �x� t�dx �

Z
ux�x� t� � Const�ku�kL� �

���



it follows that their di�erence is also bounded�

ku�x� t�kBV �

Z �
u�x �x� t�� u�x �x� t�

�
dx � Const� �������

Observe that no regularity is �gained� in the linear case� where A���u� � ��
Indeed� the compactness asserted in ������� is a purely nonlinear regularizing phe�
nomenon which re�ects the irreversibility of nonlinear conservation laws� due to loss
of entropy �information� across shock discontinuities� Here� nonlinearity is quanti�
ed in terms of convexity in the prototype example of the inviscid Burgers� equa�
tion�

�

�t
u !

�

�x
�
u�

�
� � �� �������

one nds a time decay� ux�x� t� � ��t� Tartar ���� proved this regularizing e�ect for
general nonlinear �uxes � nonlinear in the sense of A����� �� �� a�e��

The situation with multidimensional equations� however� is less clear� Consider
the �two�dimensional Burgers� equation�� analogous to �������

�

�t
u !

�

�x�
�
u�

�
� !

�

�x�
�
u�

�
� � �� �������

Since u�x�� x�� t� � u��x�� x�� is a steady solution of ������� for any u�� it follows
that initial oscillations persist �along x� � x� � Const�� and hence there is no
regularizing e�ect which guarantee the compactness of the solution operator in this
case� More on oscillations and discontinuities can be found in Tartar�s review �����

��� Velocity averaging lemmas �m � �� d � ��

We deal with solutions to transport equations

a�v� � rxf�x� v� � �svg�x� v�� �������

The averaging lemmas� ����� ����� ����� state that in the generic non�degenerate
case� averaging over the velocity space� &f�x� 	�

R
v
f�x� v�dv� yields a gain of spatial

regularity� The prototype statement reads

Lemma ��� ��������������� Let f � Lp�x� v� be a solution of the transport equation
������ with g � Lq�x� v�� � � q � p � �� Assume the following non�degeneracy
condition holds

measvfvj ja�v� � 
�j
jj 	 �g � Const � ��� � � ��� ��� �������

Then &f�x� 	�
R
v
f�x� v�dv belongs to Sobolev space W ��Lr�x���

&f�x� �W ��Lr�x��� � 	
�

���� p�

q�
� ! �s ! ��p�

�
�

r
�

�

q
!

�� �

p
� �������

���



Variants of the averaging lemmas were used by DiPerna and Lions to construct
global weak �renormalized� solutions of Boltzmann� Vlasov�Maxwell and related
kinetic systems� ���� ���� in Bardos et� al�� ���� averaging lemmas were used to
construct solutions of the incompressible Navier�Stokes equations� We turn our
attention to their use in the context of nonlinear conservation laws and related
equations�

Proof� �Sketch�� We shall sketch the proof in the particular case� p � q which will
su�ce to demonstrate the general p �� q case�

Let ���
� v� denote the set where the symbol a�v� � 
� is �small��

���
� v� 	� f�v� 
�j ja�v� � 
�j � �g� 
� 	�



j
j � �������

and decompose the average� &f�x� accordingly	

f�x� �
R
v
f�x� v�dv �

�
R
v
F��j
j��


�sv,g�
� v�

a�v� � 
� ��c� �
� v�

�
dv! �� f

�
�x�

!
R
v
F��

�
,f�
� v���� �
� v�

�
dv �� f�x�� f

�
�x��

�������

Here� �� represents the usual smooth partitioning relative to �� and its comple�
ment� �c

� � On �c� the symbol is �bounded away� from zero� so we gain one derivative	

kf �kW��Lp�� � Const�kgkLp�x
v��
�
p�
��m���

 �������

On � � along the "non uniformly elliptic� rays� we have no gain of regularity�
but instead� our non�degeneracy assumption implies that j�j is a �small� set and
therefore

kf � f
�kLp � Const�kfkLp�x
v��

�
p� �������

Both ������� and ������� are straightforward for p � � and by estimating the
corresponding H� multipliers� the case � 	 p � � follows by interpolation� Finally�
we consider the K�functional

K�f � t� 	� inf
g

�
kf � gkLp ! tkgkW��Lp�

�
 

The behavior of this functional� K�f � t� � t�� characterize the smoothness of f in
the intermediate space between Lp and W ��Lp�	 more precisely� f belongs to Besov
space B�

� with �intermediate� smoothness of order ��

Now set g � f
�
� then with appropriately scaled � we nd that K�f� t� � t� with

� � �
�s���p�

� This means that f�x� belongs to Besov space� f�x��B�
��Lp�x�� and

������� �with p � q � r� follows�

Remark ��� In the limiting case of � � � in �������� one nds that if

measvfvj ja�v� � 
�j � �g � �� �������

then averaging is a compact mapping� ff�x� v�g � Lx
v � ffg � Lp� The case
p � � follows from G*erard�s results �����

���



��� Regularizing e�ect revisited �m � �� d � ��

In this section we resume our discussion on the regularization e�ect of nonlinear
conservation laws� The averaging lemma enables us to identify the proper notion
of �nonlinearity� in the multivariate case� which guarantee compactness�
The following result� adapted from ����� is in the heart of matter�

Theorem ��� Consider the scalar conservation law

�tu !rx � A�u� � �� �t� x� � R
�
t � R

d
x � �������

and assume that the following non�degeneracy condition holds consult �������

	� � ��� �� 	 measvfvj j� ! A��v� � 
j 	 �g � Const � ��� 
�� ! j
j� � ��
�������

Let fu�g be a family of approximate solutions with bounded measures of entropy
production�

�t��u�� !rx � F �u�� �M���� T �� R
d
x�� 
��� � �� �������

Then u��t� x� � W
�

���

loc �Lr�t� x��� r � ���
���

�

Remark ��� Note that the bounded measure of entropy production in �������
need not be negative general bounded measures will do�

Proof� To simplify notations� we use the customary �th index for time direction�

x � �t� x�� x�� � � � � xd�� A�u� � �A��u� � �� A��u�� � � � � Ad�u���

The entropy condition ������� with Kru$zkov entropy pairs ������ reads

rx � �sgn�u� � v��A�u���A�v��� � ��

This denes a family of non�negative measures� m��x� v��

rx � �sgn�v�A�v�� sgn�u� � v��A�u���A�v��� �	 m��x� v�� �������

Di�erentiate ������� w�r�t� v	 one nds that the indicator function� f�x� v� � �u��v��
where

�u��v� 	�

�
!� � 	 v 	 u�

�� u� 	 v 	 �
� jvj � u�

� �������

satises the transport equation�

�tf
� ! a�v� � rxf

� �
�

�v
m��t� x� v�� �������

which corresponds to ������� with s � �� g�x� v� � m��x� v� � Mx
v
��� We now

apply the averaging lemma with �s � q � �� p � ��� which tells us that u��t� x� �R
�u��v�dv �W

�
���

loc �Lr�t� x�� as asserted�

�� Once more� it is the symmetry property ����� which has a key role in the deriva�
tion of the transport kinetic formulation ��������

���



It follows that if the non�degeneracy condition ������� holds� then the family of ap�
proximate solutions fu�g is compact and strong convergence follows� In this context
we refer to the convergence statement for measure�valued solutions for general mul�
tidimensional scalar conservation laws � approximate solutions measured by their
nonpositive entropy production outlined in Lecture I� x����

Here� Theorem ��� yields even more� by quantifying the regularity of approxi�
mate solutions with bounded entropy productions in terms of the non�degeneracy
condition �������� In fact� more can be said if the solution operator associated with
fu�g is translation invariant	 a bootstrap argument yields an improved regularity�
�����

u��t � �� �� � W
�

��� �L��x��� �������

In particular� if the problem is nonlinear in the sense that the non�degeneracy
condition ������� holds�

measvfvj � ! A��v� � 
 � �g � �� �������

then the corresponding solution operator� Tt� t � �� has a regularization e�ect map�
ping Tft��g 	 L�� � L�� This could be viewed as a multidimensional general�
ization for Tartar�s regularization result for a�e� nonlinear one�dimensional �uxes�
A����� �� �� a�e��

We continue with few multidimensional examples which illustrate the relation be�
tween the non�degeneracy condition� ������� and regularity�

Example ��� The �two�dimensional Burgers� equation� ��������

�

�t
u !

�

�x�
�
u�

�
� !

�

�x�
�
u�

�
� � ��

has a linearized symbol � �!v
��!v
�� which fails to satisfy the non�degeneracy)non�
linearity condition �������� since it vanishes 
v�s along � � � 
�� ! 
�� � �� This
corresponds to its persistence of oscillations along x� � x� � const� which excludes
compactness�

Example ��� We consider

�

�t
u !

�

�x�
�
u�

�
� !

�

�x�
�eu� � �� �������

In this case the linearized symbol is given by � � ! v
�� ! ev
�� Here we have

measfv j j� � ! v
�� ! ev
��j � �g � Const��
�
�

�just consider the second�order touch�point at v � ��� Hence� the solution operator

associated with ������� is compact � � in fact� mapping L�� � W
�
� �L����

Example ��� Consider

�

�t
u !

�

�x�
�jumju� !

�

�x�
�jujnu� � �� �������

For n �� m we obtain an index of non�degeneracy)non�linearity of order � �
��maxf� ! m� � ! ng�

���



Kinetic and other approximations
Theorem ��� provides an alternative route to analyze the convergence of general
entropy stable multi�dimensional schemes� schemes whose convergence proof was
previously accomplished by measure�valued arguments here we refer to nite�
di�erence� nite�volume� streamline�di�usion and spectral approximations ���� which
were studied in ������������������ Indeed� the feature in the convergence proof of all
these methods is the W��

loc �L���compact entropy production� �������� Hence� if the
underlying conservation law satises the non�linear degeneracy condition ��������
then the corresponding family of approximate solutions� fu��t � �� ��g becomes
compact� Moreover� if the entropy production is bounded measure� then there is
actually a gain of regularity indicated in Theorem ��� and respectively� in �������
for the translation invariant case�

Remark ��� Note that unlike the requirement for a nonpositive entropy produc�
tion from measure�valued solutions �consult ������ in Lecture I�� here we allow for
an arbitrary bounded measure�

So far we have not addressed explicitly a kinetic formulation of the multidi�
mensional conservation law �������� The study of regularizing e�ect for multidi�
mensional conservation laws was originally carried out in ���� for the approximate
solution constructed by the following BGK�like model� ���� �see also ����������

�f�

�t
! a�v� � rxf

� �
�

�

�
�u��v�� f�

�
� �t� x� v� � R

�
t � R

d
x � Rv � �������

f�jt�� � �u��x��v�� �x� v� � R
d
x � Rv � �������

Here� �u��t
x��v� denotes the "pseudo�Maxwellian��

�u��v� 	�

�
!� � 	 v 	 u�

�� u� 	 v 	 �
� jvj � u�

� �������

which is associated with the average of f��

u��t� x� � &f� 	�

Z
R

f��t� x� v�dv� �t� x� � R�
t �Rd

x� �������

The key property of this kinetic approximation is the existence of a nonnegative
measure� m� such that �

�

�
�u��v� � f�

�
� �m�

�v
�The existence of such measures

proved in ���� and is related to H�functions studied in ���� and Brenier�s lemma
����� Thus� we may rewrite ������� in the form

�f�

�t
! a�v� � rxf

� �
�m�

�v
� m� �M���� T �� R

d
x � R

�
v �� �������

Let ��� F � be an entropy pair associated with �������� Integration of �������
against ���v� implies that the corresponding macroscopic averages� u��t� x�� satisfy

�t��u�� !rx � F �u�� � �� 
��� � �� �������

���



Thus� the entropy production in this case is nonpositive and hence a bounded mea�
sure� so that Theorem ��� applies� Viewed as a measure�valued solution� conver�
gence follows along DiPerna�s theory ���� If� moreover� the nondegeneracy condition
������� holds� then we can further quantify the W s�regularity �of order s � �

���
��

Theorem ��� o�ers a further generalization beyond the original� �kineticly� mo�
tivated discussion in ����� Indeed� consideration of Theorem ��� reveals the intimate
connection between the macroscopic assumption of bounded entropy production in
�������� and an underlying kinetic formulation �������� analogous to �������� For a
recent application of the regularizing e�ect for a convergence study of nite�volume
schemes along these lines we refer to �����

��
 Degenerate parabolic equations

As an example one can treat convective equations together with �possibly degener�
ate� di�usive terms

�tu
� !rx �A�u�� � rx � �Qrxu

��� Q � �� �������

Assume the problem is not linearly degenerate� in the sense that

measvfvj � ! A��v� � 
 � �� hQ�v�
� 
i � �g � �� �������

Let fu�g be a family of approximate solutions of ������� with W��
loc �L���compact

entropy production�

�t��u�� !rx � F �u�� � W��
loc �L��t� x��� 
��� � �� �������

Then fu�g is compact in L�
loc�t� x�� �����

The case Q � � corresponds to our multidimensional discussion in x����� the
case A � � correspond possibly degenerate parabolic equations �consult ���� and
the references therein� for example�� According to �������� satisfying the ellipticity
condition� hQ�v�
� 
i � � on a set of non�zero measure� guarantees regularization�
compactness ���

Again� a second�order version of the averaging lemma ��� enables us to quantify
the gained regularity which we state as

Lemma ��� Let f � L��x� v� be a solution of the di
usive equation

�
X

qij�v���xixjf �
�m

�v
� Q 	� �qij� � �� m�t� x� v� �M��

Assume the following non�degeneracy condition holds

measvfvj j� � h
�� Q�v�
�i 	 �g � Const � ��� � � ��� ��� �������

Then &f�x� 	�
R
v
f�x� v�dv belongs to Sobolev space W ��L��x���

&f�x� �W ��L��x��� � 	
��

�� ! �
�������

���



Example� Consider the isotropic equation

ut ! ���u� � �� � � �
Here Qij�v� � �ij�

��v� and the lemma ��� applies� The kinetic formulation of
such equations was studied in ����� In the particular case of porous media equation�
��u� � um�m � �� ������� holds with � � �

m�� � � and one conclude a regularizing

e�ect of order s 	 �
�m��

� i�e�� u�t � �� �� 	 L�� �W s�L���
A particular attractive advantage of the kinetic formulation in this case� is that it
applies to non�isotropic problems as well�

��� The �� � isentropic equations

We consider the �� � system of isentropic equations� governing the density � and
momentum m � �u�

�

�t

�
�
�u

�
!

�

�x

�
m
m�

�
! p���

�
� �� �������

Here p��� is the pressure which is assumed to satisfy the �scaled�  law� p��� �

#�� � # � ������
��

�
The question of existence for this model� depending on the  �law� � 	  	 ��

was already studied ������� by compensated compactness arguments� Here we revisit
this problem with the kinetic formulation presented below which leads to existence
result for � 	  	�� consult ����� and is complemented with a new existence proof
for � 	  	 �� consult �����

For the derivation of our kinetic formulation of �������� we start by seeking all
weak entropy inequalities associated with the isentropic �� � system ��������

�tw ! �xA�w� � �� w 	�


�
m

�
� A�w� 	�


m

m�

�
! #��

�
�������

The family of entropy functions associated with ������� consists of those ��w��s
whose Hessians symmetrize the Jacobian� A��w� the requirement of a symmetric
����w�A��w� yields the Euler�Poisson�Darboux equation� e�g� ���

��� �
� � ���

�
�����uu�

Seeking weak entropy functions such that ���� u�j��� � �� leads to the family of
weak �entropy� entropy �ux� pairs� ����� u�� F ��� u��� depending on an arbitrary ��

���� u� � �

Z
��
���u ! 
���d
�

q��� u� � �

Z
��
���u ! 
����u ! �
���d
� �������

Here� ��
� is given by

��
� 	� ��� 
����  	�
��  

�� � ��
� �� � 	�

 � �

�
�

��	



We note that � is convex i� � is� Thus by the formal change of variables� v �
u ! 
��� the weight function ��
� becomes the �pseudo�Maxwellian�� ��
u�v� �
����v � u������

��
u�v� 	� ����� � �v � u������ �������

We arrive at the kinetic formulation of ������� which reads

�t��
u�v� ! �x �a�v� �� u���
u�v�� � ��vvm� m�M�� �������

Observe that integration of ������� against any convex � recovers all the weak
entropy inequalities� Again� as in the scalar case� the nonpositive measure m on
the right of �������� measures the loss of entropy which concentrates along shock
discontinuities�

The transport equation ������� is not purely kinetic due to the dependence on
the macroscopic velocity u �unless  � � corresponding to � � ���

a�v� �� u� � �v ! ��� ��u� u ! 
����

Compensated compactness arguments presented in ���� yield the following com�
pactness result�

Theorem ��� ����� Consider the isentropic equations ������ with  � � and let
��n � �n�t� x�� un � un�t� x�� be a family of approximate solution with bounded
entropy production and �nite energy� En 	� �nu

�
n ! ��n � L��R�t � L

��Rx��� Then
a subsequence of �n still denoted by �n� converges pointwise to �� and a subse�
quence of� un converges pointwise to u on the set f��x� t� � �g� In particular� �nun
converges pointwise to �u�

Finally� we consider the �� � system�
�tv � �xw � ��
�tw ! �xp�v� � �� t � �� x � R�

�������

endowed with the pressure law

p�v� � #v�� �  � �� # �
� � ���

� 
� �������

The system ��������������� governs the isentropic gas dynamics written in La�
grangian coordinates� In general the equations ��������������� will be referred to as
the p�system �see �����������

For a kinetic formulation� we rst seek the �entropy�entropy �ux� pairs� ��� F ��
associated with ���������������� They are determined by the relations

�vv ! p��v� �ww � �� �������

where F is computed by the compatibility relations

Fv � �w p��v�� Fw � ��v� �������

���



The solutions of ������� can be expressed in terms of the fundamental solution

��v� w� �

Z
R

��
��v
w�
�d
�

where the fundamental solutions� �v
w�
�� are given by

�v
w�
� � v
�
v��� � �w � 
��

��
�
�  �

��  

�� � ��
� �������

Here and below� 
 �rather than v occupied for the specic volume� denotes the
kinetic variable� The corresponding kinetic �uxes are then given by

hv
w�
� � �

 � w

v
�v
w�
��

We arrive at the kinetic formulation of ��������������� which reads� ����

�t�v
w ! �x�a�
� v� w��v
w�
�� � ���m� m�t� x� 
� � M�� �������

with macroscopic velocity� a�
� v� w� 	� ��
 � w��v�
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